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1 Introduction and historical background

You never know what premium mathematics is until you have heard of
the Riemann zeta function.

– L.B. Seekos

The zeta function was introduced by Euler in the 1700s, defined as

ζ(s) =

∞∑
n=1

1

ns

where s ∈ C is a complex number with real part greater than 1, to ensure that
the series converges (in fact it converges absolutely).

He discovered the following equation known as the Euler Product form of the
Zeta function:

ζ(s) =
∏

p prime

1

1− p−s

This suggests a relationship between the zeta function and prime numbers.

Proof: If you imagine expanding out the product and collecting the terms, since∏
p prime

1

1− p−s
=

∏
p prime

(1 + p−s + p−2s + . . . )

you’ll pick up 1
ns exactly once because of the fundamental theorem of arithmetic.

The proof essentially follows this intuition but with a finite product as we don’t
know about its convergence yet. Let s = σ + it where σ > 1. Then∣∣∣∣∣∣ζ(s)−

∏
p≤x

1

1− p−s

∣∣∣∣∣∣ =
∞∑

n=1

1

ns
−
∏
p≤x

(1 + p−s + p−2s + . . . )

=

∣∣∣∣∣∑
n∈S

n−s

∣∣∣∣∣ ≤
∞∑

n=x

n−σ → 0
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as x → ∞. Here, S is the set of numbers which involve a prime factor larger
than x and in the last inequality, we used the triangle inequality and the fact
that |ns| = nσ as the imaginary part has modulus 1. A corollary of this is that
ζ(s) ̸= 0.

Proof: We can see that
∏
p≤x

(1− p−s)−1 ̸= 0 so

∣∣∣∣∣∣ζ(s)
∏
p≤x

1

1− p−s

∣∣∣∣∣∣ =
∣∣∣∣∣∏
n>x

1

1− p−s

∣∣∣∣∣ ≥ 1−

∣∣∣∣∣∑
n∈S

1

ns

∣∣∣∣∣→ 1

as x→ ∞.

Knowledge of the divergence of the harmonic series tells you that ζ(s) diverges
as s→ 1. Through the Euler product, we can then relate the harmonic series to
the corresponding product over primes - in fact we can use Hn ∼ log n and take
the log of the product (a standard way to compare infinite products to infinite
series) and find the non trivial result that∑

p≤x

1

p
∼ log log x

which also shows that the sum diverges, albeit very slowly. This is a strength-
ening of Euclid’s classical result that there are infinitely many primes.

Proof: Taking logarithms and using the Taylor series of log(1− x), we have

log

∏
p≤x

1

1− 1
p

 = −
∑
p≤x

log

(
1− 1

p

)

=
∑
p≤x

∞∑
k=1

1

kpk

=
∑
p≤x

1

p
+
∑
p≤x

∞∑
k=2

1

kpk

Analysing the second term,

∑
p≤x

∞∑
k=2

1

kpk
≤
∑
p≤x

∞∑
k=2

1

pk

=
∑
p≤x

p−2

1− p−1
=
∑
p≤x

1

p(p− 1)
≤

∞∑
n=1

1

n(n− 1)
= 1 <∞

Now we know that the product behaves like log x for large x because of the
harmonic series so we have the result.
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Another interesting subset is the twin primes - primes p such that p + 2 is a
prime. It turns out the sum over twin primes converges to a number known as
Brun’s constant: ∑

p,p+2 prime

1

p
+

1

p+ 2
≈ 1.90216...

This was proven by Brun in 1919 and also has historical importance as the
introduction of sieve methods, an important tool in analytic number theory.
The convergence of this sum means we don’t learn about whether there are
infinitely many twin primes, which is still a famous open problem. But there
has been recent progress on this - particularly the work by Yitang Zhang and
James Maynard in 2013.

2 Enter Riemann

Given the previous results, studying the ζ function will likely tell us more about
primes. When studying a complex function, analytic continuation often is useful
to gain new information about the original function - it often paints the function
in a new light, making some properties easier to see. An attempt to analytically
continue the Riemann zeta function can be made by expressing the sum as an
integral of a fractional part which gives, for Re(s) > 1

ζ(s) =
s

s− 1
− s

∫ ∞

1

{x}
xs+1

dx = −s
∫ ∞

0

{x}
xs+1

dx

These integrals converge for 0 < Re(s) < 1 and it agrees with our original
definition for Re(s) > 1 so we can take this to extend the definition of the
Riemann Zeta function. This formula also shows us that ζ’s only pole is a
simple pole at s = 1. This continuation doesn’t extend to all of C though.

In 1859, Riemann published his only paper on number theory which had a very
significant impact on mathematics. Riemann extended the definition of the zeta
function to the rest of the complex plane by establishing that the functional
equation

ζ(s) = 2(2π)s−1Γ(s) sin
(πs

2

)
ζ(1− s)

Proof: The integral representation makes for a fairly simple derivation of the
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functional equation. Using the Fourier series of {x}, we have

(2s − 1)
ζ(s)

s
=

∫ ∞

0

{x} − {2x}
xs+1

dx

=

∫ ∞

0

x−s−1
∞∑

n=1

sin(4πnx)− sin(2πnx)

nπ
dx

=

∞∑
n=1

1

nπ

∫ ∞

0

x−s−1(sin(4πnx)− sin(2πnx))dx

=

∞∑
n=1

1

nπ
(2s − 22s)πs−1Γ(−s) sin πs

2
ζ(1− s)

where the exchange of the sum and integral is justified because the partial sums
are uniformly bounded and x−s−1 is integrable on that range. Cancelling down,
we have the functional equation.

This extends the zeta function to a meromorphic function to the rest of the
complex plane, where Γ(s) is the Gamma function, for s ∈ C. This then shows
us that ζ(−2n) = 0 for n ∈ Z≥0 because sin(−πn) = 0 - these are called the
trivial zeroes.

We know that for Re(s) > 1, ζ(s) ̸= 0 so, by the functional equation that
the zeroes of the zeta function are restricted to the strip 0 ≤ Re(s) ≤ 1 - this
is known as the critical strip. Also if s ∈ C isn’t a negative even integer, if
ζ(s) = 0, ζ(1 − s) = ζ(s) = 0 - the first is by the functional equation and the
second because ζ(s) = ζ(s) because they agree on Re(s) > 1 so they are equal by
the principle of isolated zeroes. The Riemann Hypothesis suggests only one of
these symmetries is non trivial - that all of the zeroes are on the line Re(s) = 1

2 .
This is known as the most important problem in mathematics and has many
implications for number theory - why?

3 What ζ tells us about Number Theory

We define some the prime counting function, the Chebyshev function and the
von Mangoldt function:

π(x) =
∑

p≤x: p prime

1 Λ(n) =

{
log p if n = pk and

0 otherwise
ψ(x) =

∑
n≤x

Λ(n)

While π(x) is the intuitive way to count primes, counting primes with a log
weight and including prime powers turns out to be nicer. We can use partial
summation to move between the two. As a demonstration of this, the Chebyshev
function can be expressed as a sum over the non trivial zeroes ρ of the Riemann
zeta function:

ψ(x) = x−
∑
ρ

xρ

ρ
− log(2π)− 1

2
log

(
1− 1

x2

)
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This formula, known as the Riemann-von Mangoldt explicit formula, is remark-
able and the proof is fairly involved - it can be found in [1] on page 31. A version
with an error term is the following where x isn’t an integer and T ≥ 1 is some
parameter,

ψ(x) = x−
∑

ρ: |γ|≤T

xρ

ρ
− log 2π − 1

2
log

(
1− 1

x2

)
+O

(
x

T

(
log(xT )2 +

log x

⟨x⟩

))
where ρ = β + iγ and ⟨x⟩ is the distance from x to the nearest prime power.

With knowledge about the properties of the zeroes, we can deduce information
about ψ(x) and so, prime numbers. An important question is ’how many prime
numbers are there?’ which we quantify with π(x) - in particular, the growth
rate of π(x). The prime number theorem proposes the answer to this question,
namely that

π(x) ∼ x

log x

The prime number theorem is equivalent to the statement that ψ(x) ∼ x with
partial summation. Using the explicit formula, we see that this is equivalent to
the claim that

lim
x→∞

−
∑

ρ
xρ

ρ − log(2π)− 1
2 log

(
1− 1

x2

)
x

= − lim
x→∞

∑
ρ

xρ−1

ρ
= 0

Now if the limit could be taken term wise, it suffices to prove that xρ−1 → 0
which happens if Re(ρ) < 1, then we get the result. We already know that
Re(ρ) ≤ 1 so the Prime Number Theorem follows from being able to take this
limit termwise and proving that Re(ρ) ̸= 1. This is the approach taken by
Hadamard and de la Vallée Poussin independently in 1896.

Assuming the Riemann Hypothesis - that Re(ρ) = 1
2 , we can improve this result

by providing the error term of this approximation.

ψ(x) = x+O(
√
x(log x)2)

Proof: We follow the proof in [1] on page 32. Assume that x ≥ 2 isn’t an integer
and that ⟨x⟩ ≥ 1 - these assumptions change the outcome by a term of at most
O(log x) which can be included in the error term. Let T ≥ 1 be some parameter
which will be chosen later. Then the explicit formula with error term gives

ψ(x) = x+O

1 +
∑

ρ: |γ|≤T

xρ

ρ
+
x

T
log(xT )2


Assuming the Riemann Hypothesis, we get∑

ρ: |γ|≤T

xρ

ρ
≤

√
x
∑

ρ: |γ|≤T

1

|ρ|
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From the next section we’ll learn that the number of zeroes in the region n ≤
t ≤ n+ 1 is O(log n) and in that region, we have |ρ| > n so that∑

ρ: |γ|≤T

1

|ρ|
≤ 1 +

∑
2≤n≤T+1

log n

n
≤ (log T )2

Therfore the error term is bounded by 1 +
√
x(log T )2 +

x

T
log(xT )2. Now we

can choose T = x and the result follows.

In fact, the Riemann Hypothesis is equivalent to the statement that

ψ(x) = x+O(x
1
2+ε)

for all ϵ > 0. ψ(x) is determined by the distribution of the primes - our interest
in the ζ function was that it tells us about the distribution of the primes but
this shows us ζ is similarly determined by knowledge of the distribution of the
primes - they are inextricably linked.

4 The number of zeros of ζ

How many zeroes does ζ have? How do we know it has any zeroes? We used
this result in the proof of our bound dependent on the Riemann Hypothesis
(maybe just name it). Let N(T ) be the number of zeroes ρ = β + iγ in the
region 0 ≤ β ≤ 1, 0 ≤ γ ≤ T . Then we have the following:

N(T ) =
T

2π
log

T

2π
− T

2π
+O(log T )

Proof: We follow the proof in [1] on Page 38, using the argument principle on
the region specified above. From before, ζ has a pole at s = 1. To avoid a pole
on the region of integration, we introduce the Riemann ξ function which has
the same zeroes as ζ but is entire

ξ(s) =
1

2
s(s− 1)π− s

2Γ
(s
2

)
ζ(s)

The functional equation for ξ is ξ(s) = ξ(1− s) and ξ has no poles and any zero
of ξ is a zero of ζ. Without loss of generality, assume that there isn’t a zero at
height T . Then by the argument principle,

N(T ) =
1

2πi

∫
C

ξ′(s)

ξ(s)
ds

where the contour C is a rectangle between -1, 2, 2+iT , -1+iT . Split the contour

by a vertical line at σ = 1
2 . Then by the functional equation,

ξ′(s)

ξ(s)
= −ξ

′(1− s)

ξ(1− s)
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so the integral on the left hand piece is equal to the integral on the contour from
1
2 − iT to 2− iT to 2 to 1

2 . Integrals cancel, leaving us with

N(T ) =

∫
C′

ξ′(s)

ξ(s)
ds

where C ′ consists of three line segments from 1
2 − iT to 2 − iT to 2 + iT to

1
2 + iT . We also have

ξ′(s)

ξ(s)
=

1

s
+

1

s− 1
+
ζ ′(s)

ζ(s)
+

1

2

Γ′ ( s
2

)
Γ
(
s
2

) − s

2
log π

As long as we don’t cross any branch cuts containing zeroes of f(s), the deriva-

tive of log f is f ′

f so we can use the fundamental theorem of calculus. This
yields

N(T ) =
1

2πi

(
log s+ log(s− 1) + log ζ(s) + log Γ

(s
2

)
− s

2
log π

) 1
2+iT

1
2−iT

The first term contributes 1
2 +O(T ), the final term contributes − log π

2π T .

For Γ, using Stirling’s formula we get

log Γ(s) = s log s− s+O(log s)

at s = 1
4 ± iT

2 . Since the argument of 1
4 + iT

2 is π
2 +O( 1

T ), we get

1

2πi

(
log Γ

(s
2

)) 1
2+iT

1
2−iT

=
1

2πi

(
iT log

∣∣∣∣14 +
iT

2

∣∣∣∣− iT +O(log T )

)
=

T

4π
log

(
1

16
+
T 2

4

)
− T

2π
+O(log t)

=
T

2π
log

(
T

2

)
− T

2π
+O(log T )

Finally, we have to analyse the log ζ term. The real parts cancel so we only
need to consider Im log ζ( 12 ± iT ) = O(log T ). We have that

ζ ′(s)

ζ(s)
=

∑
ρ: |γ−T |≤1

1

s− ρ
+O(log T )

There isn’t any zero at height T so by inegrating, we get

Im

(∫ 2

1
2

ζ ′(σ + iT )

ζ(σ + iT )

)
dσ = Im(log ζ(2 + iT )− log ζ( 12 + iT ))
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The first term is O(1), using the formula log ζ(s) =

∞∑
n=1

Λ(n)

log n
n−s. The left hand

side is

−
∑

ρ |γ−T |≤1

∫ 2

1
2

Im

(
1

σ + iT − ρ

)
dσ +O(log T )

To bound each summand for ρ = β + iγ, write it as∫ 2

1
2

γ − T

(σ − β)2 + (γ − T )2
dσ

Changing variables via σ − β = u(γ − T ) (we have γ − T ̸= 0), this integral is
at most ∫ ∞

−∞

du

1 + u2
= π = O(1)

So there are O(log T ) summands, each of size O(1) so we have Imlog ζ( 12 + iT ) =
O(log T ). Putting everything together, we get the final result,

N(T ) =
T

2π
log

T

2π
− T

2π
+O(log T )

This formula tells us that there are zeroes - in fact infinitely many of them!
It was proved by Hardy in 1914 that there are infinitely many zeroes on the
critical line.

5 Conclusion

The Riemann Zeta function has deep connections with properties of primes -
understanding prime numbers is a major goal for number theory so the Rie-
mann Zeta function has a very important role in number theory. It’s reasonable
to expect that any function with similar properties could also have number
theoretic value. This motivates the definition of an L-function, a function of

the form L(s) =
∑
n≥1

ann
−s (a Dirichlet series) which has similar properties, an

Euler product a functional equation and (conjecturally) a meromorphic contin-
uation, like the ζ function. These L-functions are an important object of study
in number theory and have connections to other areas of mathematics. Another
example of an important class of L-functions are Dirichlet L-functions. Just like
the Riemann Zeta function, it has an Euler product, a functional equation, a
meromorphic continuation to the complex plane and Dirichlet showed that they
are non-zero when s = 1. This was used to show that there are infinitely many
primes in arithmetic progressions of the form a+nd where a and d are coprime
- another deep number theoretic result. I hope this article illuminated some
of the properties of the Riemann Zeta function and its importance in number
theory, a seemingly disconnected field from complex analysis.
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6 Further Reading

This article was heavily inspired by Dr Bloom’s Part III Analytic Number The-
ory course in 2020 with several proofs being lifted from those notes. Edwards’
text ’Riemann’s Zeta Function’ goes into much further detail on the zeta func-
tion such as proving Hardy’s theorem that there are infinitely many zeroes on
the critical line and improvements of this result. For general reading in analytic
number theory, Davenport’s ’Multiplicative Number Theory’ covers many of the
main topics.
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