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1 Introduction

Let R be a unital commutative ring with no zero divisors. A linear recurrence
sequence (LRS) over R is a sequence u = {un}∞n=0 of elements in R which
satisfies a recurrence of the form

un+k = a0un+k−1 + · · ·+ ak−1un, (1)

where the constants a0, . . . , ak−1 ∈ R are referred to as the recurrence coeffi-
cients of u and say that u is an R-LRS. We will refer to (1) as the recurrence
relation of u, here (1) has order k. We write u to refer to the whole sequence
and un for a specific term, indexed by n ∈ N = {0, 1, 2, . . . }. With u0, . . . , un−1

(referred to as initial terms of u), (1) uniquely determines u. The LRS u may
satisfy many different recurrences but it satisfies a unique recurrence of minimal
order - we will assume that the recurrence relation for every LRS u in this article
is of minimal order, so in (1), we have ak−1 ̸= 0 and we define the order of the
LRS u to be k. We define Ann(u) = {n ∈ N | un = 0} to be the annihilator of
u. What is the shape of Ann(u)?

Example 1.1. Consider the Fibonacci sequence given by u0 = u1 = 1 and
un+2 = un+1 + un. Clearly un > 0 for all n ≥ 0 so Ann(u) = ∅. If instead we
considered a shifted Fibonacci sequence u0 = 0, u1 = 1, then we would, by the
same argument, have Ann(u) = {0}, a finite set.

Example 1.2. Consider the following modification of the Fibonacci sequence
given by u0 = 0, u1 = 0, u2 = 1, u3 = 0 and the recurrence un+4 = un+2+un. At
every even n, it is the sum of two zeroes, for odd n, we get the typical Fibonacci
sequence. Therefore Ann(u) = {1} ∪ {n | n ≡ 0 mod 2}, the union of a finite
set and an arithmetic progression.

These examples cover every case, according to the Skolem-Mahler-Lech theorem
[36, 24, 7] which characterises the set Ann(u):

Theorem 1.3 (Skolem-Mahler-Lech Theorem). Let u be a LRS over a field of
characteristic zero. Then we have r, j1, . . . , jm ∈ N (m may be zero) and a finite
set S ⊂ N such that

Ann(u) = S ∪
m⋃
i=1

{ji + rq | q ∈ N}.

The integers r, j1, . . . , jm and the finite set S depend only on u.

Sets of the same form as Ann(u) will frequently appear so we make the following
definition:

Definition 1.4. A set A is quasi-periodic if it is the union of a finite set and
finitely many arithmetic progressions.

All known proofs of the Skolem-Mahler-Lech theorem are non constructive - they
provide no algorithm to determine the zero set. This leads us to the Skolem
Problem:
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Problem 1.5 (Skolem Problem). Let u be a LRS over a field of characteristic
zero. Is there an algorithm to determine whether Ann(u) ̸= ∅?
The Skolem Problem has been characterised by Tao [37] as ’the halting problem
for linear automata’. Decidability of the Skolem Problem is important to several
areas and problems in thereotical computer science, such as loop termination
[30] and the algorithmic analysis of stochastic systems [9]. It also has appeared
in other contexts, such as formal power series [31] and control theory [4].

In this essay, first we will prove the Skolem-Mahler-Lech theorem for LRS over
a field of characteristic zero, following a proof in [16]. Then we will demonstrate
the decidability of the Skolem Problem for Q ∩ R-LRS of order up to 4 - and
define the MSTV class, a class of LRS for which the Skolem Problem is decidable
as shown in [28, 18]. The second half of the essay will be concerned with two
modern developments. The first, based on [20, 3], considers results conditional
on the Skolem Conjecture, a resolution for an analogous Skolem Problem for
linear recurrence bisequences, a sequence obtained by running a LRS forwards
and backwards. Assuming this conjecture and the p-adic Schanuel conjecture,
an important conjecture in transcendental number theory, we show that the
Skolem Problem is decidable for all simple Q-LRS. The second, based on [21,
23], constructs (which we only cite) a set within which the Skolem Problem is
solvable, a universal Skolem set, and shows that this set has positive density of
at least 0.29 unconditionally and density 1 conditional on the Bateman-Horn
conjecture - a vast generalisation of many conjectures and problems on the
distribution of primes.

2 Preliminaries

Here we outline properties of LRS which will be used throughout the essay,
following chapter 1 of [12]. Throughout this essay, we write Q to mean the
algebraic closure of Q, a subfield of C. Every ring in this essay will be a unital
commutative ring with no zero divisors and every field considered will be of
characteristic zero, unless stated otherwise.

Basic properties of Linear Recurrence Sequences

Let u be a LRS over a ring R with recurrence coefficients a0, . . . , ak−1 ∈ R. We
define the characteristic polynomial g of u by

g(x) = Xk − a0X
k−1 − · · · − ak−1. (2)

If R is a field, say K, let L be the splitting field of g. We can apply the following
results for LRS u in a field to Z-LRS by viewing a Z-LRS as a Q-LRS. Then
we can factorise the characteristic polynomial over L:

g(x) =

l∏
i=1

(X − λi)
νi .
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λ1, . . . , λl ∈ L are the distinct roots of g(x), of multiplicity ν1, . . . , νl respec-
tively - we shall refer to the λi as characteristic roots. The minimality of the
LRS gives ak−1 ̸= 0 so each λi ̸= 0. If νi = 1 for all i then we say that the LRS
u is simple. If the ratio λi

λj
for i ̸= j of characteristic roots is never a root of

unity then we say that u is non degenerate, otherwise it is degenerate.

The connection between the characteristic polynomial of recurrence relation of
a LRS u can be seen by substituting un = λn into (1) for λ ∈ L and n ∈ N - we
get g(λ) = 0. This leads us to the exponential-polynomial representation of u:

un =

l∑
i=1

Qi(n)λ
n
i (3)

where Qi(X) ∈ L[X] are polynomials of degrees νi − 1 for i = 1, . . . , l.

Remark 2.1. When dealing with a Q-LRS u, it can be useful to rescale u into
a Z-LRS v. This can be done with a geometric scaling vn = Cnun where C is
the least common multiple of the denominators of u0, . . . , un−1, a0, . . . , an−1 for
n ∈ N. The recurrence relation (1) which v satisfies has recurrence coefficients
bi = Ci+1ai for 0 ≤ i ≤ k − 1 so its characteristic roots are multiplied by
C, µi = Cλi for 1 ≤ i ≤ l. In particular, the ratios of characteristic roots
are preserved. We can also use a geometric scaling to a Q-LRS to turn the
recurrence coefficients into algebraic integers.

Remark 2.2. A decomposition of u into a collection of non degenerate LRS
can be done as shown in claim 2.3. Recall λi are distinct so the ratio λi

λj
is never

1. Assume that the ratio λi

λj
is a root of unity for some i ̸= j - otherwise there

would be nothing to prove.

Claim 2.3. Let M be the least common multiple of the orders of the roots of
unity in the set { λi

λj
| i, j ≤ l}. Then for each 0 ≤ j < M , the subsequence

uM,j = (uMn+j)n≥0 is non degenerate or zero.

Proof. The characteristic roots of uM,j are distinct members β1, . . . , βs of the
set {λM

1 , . . . , λM
l }. If the LRS uM,j is zero then we have no βj so suppose it

is non zero. Then if uM,j is degenerate, we have, for i ̸= j and some minimal

integer t, ( βi

βj
)t = ( λi

λj
)Mt = 1. Since M was the least common multiple, we

have t = 1 so βi = βj , contradicting the assumption that they are distinct. This
gives us a decomposition of u into a union of LRS uM,r which are either zero or
non degenerate. uM,j satisfies a recurrence relation of order at most k and M
can be computed effectively - both claims are shown in [21], Section II B.

Another useful representation of a LRS is the matrix representation, valid over
rings R. Let u be a LRS over a ring R with characteristic polynomial g. Let A
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be the companion matrix of g

A =


a0 · · · ak−2 ak−1

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0


With α = (0 . . . 01) and β = (uk−1 . . . u1u0)

T we have

un = αAnβ for n ∈ N (4)

Remark 2.4. We refer to A as the companion matrix of u. Note that det(A) =
±ak−1. Because of the assumption of minimality, we know ak−1 ̸= 0 so A is
invertible. If R = K is a field, then given a row vector γ, a column vector δ and
an invertible matrix B, we can perform row reduction to cast B in the same
form as the companion matrix as the rows and columns are linearly independent.
Therefore the sequence vn = γBnδ is also a LRS.

Heights

In this section, we detail relevant material on heights that will be used through-
out the essay, following Chapter 14 of [25]. We will only consider heights of
algebraic numbers. We will define a height H(β) which has the important prop-
erty that for any d ∈ N and H ∈ R there are only finitely many algebraic
numbers β of degree d such that H(β) ≤ H, known as Northcott’s theorem.

Suppose β ∈ Q is of degree d = [Q(β) : Q]. Then it has a non zero minimal
polynomial B ∈ Q[X]. By clearing denominators, we can write

B(x) = b0X
d + b1X

d−1 + · · ·+ bd

where gcd(b0, . . . , bd) = 1. Enforcing b0 ≥ 1, this fixes B uniquely. Over C we
can factorise B as

B(X) = b0(X − β1) . . . (X − βd)

Then we define the height of β by

H(β)d = b0 max(1, |β1|) . . .max(1, |βd|) ≥ 1

We have the following set of properties of the height H:

Proposition 2.5. Let β1, . . . , βn be non zero algebraic numbers and suppose
that α ∈ K is a non zero algebraic number where K is a number field such that
[K : Q] = D. Then we have

(a) Let P ∈ Z[X1, . . . , Xn] be of degree at most L1, . . . , Ln in X1, . . . , Xn

respectively. Then we have

H(P (β1, . . . , βn)) ≤ L(P )H(β1)
L1 . . . H(βn)

Ln

where L(P ) is the sum of absolute values of the coefficients of P .
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(b) H(α) = H

(
1

α

)
.

(c) H(α)−D ≤ |α| ≤ H(α)D.

(d) |NK/Q(α)| ≤ H(α)D.

Proof. (a) This is Proposition 14.7 of [25]

(b) This claim is in the remarks following Proposition 14.4 of [25]; it is equa-
tion (14.24) on Page 174.

(c) The first inequality H(α)−D ≤ |α| of is Proposition 14.13 of [25]. The
second inequality follows through a combination of this with (b):∣∣∣∣ 1α

∣∣∣∣ ≥ H

(
1

α

)−D

= H(α)−D =⇒ |α| ≤ H(α)D

(d) We have, where αi are Galois conjugates of α,

|NQ(α)/Q(α)| =
d∏

i=1

|αi| ≤ max(1, |α1|) . . .max(1, |αd|) ≤ H(α)[Q(α):Q]

Now |NK/Q(α)| = |NQ(α)/Q(α)|[K:Q(α)] ≤ H(α)D by the tower law as
H(α) ≥ 1.

Remark 2.6. Let α1, . . . , αr be algebraic numbers. Throughout this essay, we
say a real number x is computable in terms of α1, . . . , αr if there is an algorithm
which can compute an upper bound for x in terms of the heights and degrees of
α1, . . . , αr. From Proposition 2.5, quantities expressible in terms of a polynomial
with algebraic coefficients in α1, . . . , αr are computable. This is because by (a),
we have

H(αβ) ≤ H(α)H(β), H(αn) ≤ H(α)n, H(α+ β) ≤ 2H(α)H(β)

where n ∈ Z in combination with (b).

If β ∈ OK then vp(β) = m is computable in terms of β. This is because
(β) = pmI for an ideal I such that p ∤ I so NK/Q((β)) ≥ NK/Q(p)

m so m is com-
putable. Say p lies above a rational prime p and (β) = pmI where m ≥ 1. Then

p is computable in terms of β as p | NK/Q(p) so p ≤ NK/Q((β))
1
m ≤ NK/Q((β)).

Let u be a LRS with characteristic roots λi, recurrence coefficients ai and
exponential-polynomial representation un =

∑n
i=1 Qi(n)λ

n
i . As in [23] page

4, we can see that Cramer’s rule allows us to find the coefficients of Qi in terms
of the recurrence coefficients ai and the characteristic roots λj so they are com-
putable in terms of the ai and λj . Notably, if u is a Q-LRS, the coefficients of
Qi are also algebraic.
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p-adic valuation

Let K be a number field, OK be its its ring of integers and p be a non zero
prime ideal in OK . A p-adic valuation can be defined analogously to the p-adic
valuation vp on Q. We define the function vp : OK − {0} → N as follows. If
x ∈ OK −{0} then xOK = pmI for some ideal I for which p ∤ I and m ≥ 0. We
set vp(x) = m.

We then have both vp(x+y) ≥ min{vp(x), vp(y)} and vp(xy) = vp(x)+vp(y) for
non zero x, y ∈ OK . We can extend vp to K× - if z = x

y for non zero x, y ∈ OK

then define vp(z) = vp(x) − vp(y). This is well defined and vp extends to a
valuation on K as shown in [10].

The p-adic exponential and the p-adic logarithm

Let p be an odd rational prime. Recall the p-adic absolute value | |p defined
on Q and let x ∈ Qp. Let Cp be the completion of the algebraic closure of Qp.
Then | |p extends uniquely to Cp [15]. We define the p-adic exponential by the
following series:

expp(x) =

∞∑
k=0

xk

k!
(5)

This series converges on S = {x ∈ Cp | |x|p < p−
1

p−1 }. Similarly, the p-adic
logarithm can be defined by the series

logp(x) =

∞∑
k=0

(−1)k+1(x− 1)k

k
(6)

This series converges on T = {x ∈ Cp | |x−1|p < 1}. Note that T∩Qp = 1+pZp.
We have expp(x+y) = expp(x) expp(y) for x, y ∈ S, logp(zw) = logp(z)+logp(w)

for z, w ∈ T . By setting logp(p) = 0 we can extend logp to C×
p using this last

property.

Useful theorems

Here we record some useful theorems that will be used throughout the essay.
Let K be a number field with ring of integers OK . A useful result by Kronecker
[19] is the following:

Theorem 2.7. Every non zero α ∈ OK that lies with its conjugates in the
closed unit disc |z| ≤ 1 is a root of unity.

This is Theorem 1.5.9 of [5]. A useful corollary is the following:

Theorem 2.8. If α ∈ K× is not a root of unity and all of its Galois conjugates
have modulus 1 then there is a prime ideal p of OK such that vp(α1) ̸= 0.
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Proof. By Theorem 2.7 we know that α /∈ OK . Therefore if n is such that
nα ∈ OK then n > 1. Suppose to the contrary that vp(α) = 0 for all prime
ideals p in OK . Then we have that

vp(nα) = vp(n) + vp(α) = vp(n).

This is true for all prime ideals so (nα) = (n) so α ∈ O×
K , a contradiction.

3 The Skolem-Mahler-Lech Theorem

The Skolem-Mahler-Lech Theorem was first proven by Skolem in 1933 [36] for
Q-LRS, extended by Mahler in 1935 [24] to Q-LRS and extended again by Lech
in 1953 [7] to LRS over a field of characteristic zero. We will follow a simpler
proof by Hansel [16]. First, the theorem will be proven Q-LRS. Then it will
be extended to LRS over finite transcendental field extensions of Q and finally
to LRS over fields of characteristic zero. The following exposition simplifies
Hansel’s proof by working with LRS instead of rational series and by using the
matrix representation of a LRS (4).

The rational case

We aim to prove the following proposition:

Proposition 3.1. Let (di)i∈N be a sequence of integers. For n ∈ N, let bn =∑n
i=0

(
n
i

)
pidi for an odd prime p. Then Ann(b) is finite or all of N.

Through the matrix representation of u, this will be used to prove the Skolem-
Mahler-Lech theorem for Q-LRS by examining the companion matrix A of u
modulo p for some prime p which doesn’t divide det(A). Then we will have
Ar = I+pA′ for some integer r and matrix A′. Then we calculate uj+rn via the
matrix representation for specific integers j and any n ∈ N and use Proposition
3.1.

Let p be a prime and let P (x) = a0+a1x+ · · ·+anx
n ∈ Q[X]. Recall the p-adic

valuation vp defined on Q. Define, for i ∈ N, vip(P ) = inf(vp(aj) for j ≥ i) - if

i > n, take vip(P ) = ∞. To prove Proposition 3.1, we begin by collecting results

on vip(P ).

We have

vp(P (m)) = vp(a0 + a1m+ · · ·+ anm
n)

≥ inf
1≤i≤n

(vp(aim
i))

≥ vp(ajm
j) for some j

= vp(aj) + vp(m
j) ≥ vp(aj) ≥ v0p(P )

With this, we prove the following lemma:
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Lemma 3.2. Let P (x) ∈ Q[X] and m ∈ Z. Then if R(x) = (x − m)P (x) we
have vip(P ) ≥ vi+1

p (R) for all i ∈ N.

Proof. Write P (x) = a0+a1x+ · · ·+anx
n and R(x) = b0+b1x+ · · ·+bn+1x

n+1.
We have bn+1 = an and bi+1 = ai −mai+1 for i = 0, 1, . . . , n − 1. Solving for
ai, we get ai = bi+1 +mbi+2 +m2bi+3 + · · · +mn−ibn+1 for 0 ≤ i ≤ n. In the
same way as the proof of vp(P (m)) ≥ v0p(P ), we see that vp(ai) ≥ vi+1

p (R) so

vip(P ) ≥ vi+1
p (R).

Now we can prove Proposition 3.1.

Proof of Proposition 3.1. Suppose that Ann(b) is infinite. We will show that it
is all of N by showing that for any pair (q, u) ∈ N2 that vp(bq) ≥ u so bq = 0 for
all q ∈ N.

Let Rn(x) =
∑n

i=0
x(x−1)...(x−i+1)

i! dip
i. We have that if m ≤ n then Rn(m) =

Rm(m) = bm. Next we show, for any i ∈ N, that vip(Rn) ≥ i − i
p−1 (note p is

an odd prime). If Rn(x) =
∑n

i=0 c
(n)
i xi, then c

(n)
i is a Z-linear combination of

djp
j

j! where j ≥ i. We have

vp

(
djp

j

j!

)
≥ j − vp(j!) ≥ j − j

p− 1
≥ i− i

p− 1

where vp(j!) ≥ j
p−1 by Legendre’s formula. So for i ∈ N, vp(c(n)i ) ≥ i − i

p−1 .

Therefore vip(Rn) ≥ i− i
p−1 .

Now fix (q, u) ∈ N2 and i ∈ N such that i − i
p−1 ≥ u. Let m1, . . . ,mi be

distinct members of Ann(b) in increasing order and N = max(q,mi). Then
we know that RN (mj) = 0 for each 1 ≤ j ≤ i so we can write RN (x) =
(x − m1) . . . (x − mi)P (x) for some P ∈ Q[X]. Therefore by Lemma 3.2, we
have

vp(bq) = vp(RN (q)) ≥ vp(P (q)) ≥ v0p(P ) ≥ vip(RN ) ≥ i− i

p− 1
≥ u

This completes the proof.

Now we prove the Skolem-Mahler-Lech theorem for Q.

Theorem 3.3 (Skolem-Mahler-Lech for Q). Let u be a Q-LRS of order k with
companion matrix A. If p is an odd prime such that p ∤ detA then there is an
integer r | |GLk(Fp)| and j1, . . . , jm ∈ {0, . . . , r − 1} (m may be zero) and a
finite set S such that

Ann(u) = S ∪
m⋃
i=1

{ji + rq | q ∈ N}
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Proof. Recall the matrix representation un = αAnβ for n ≥ 0 by (4). Since
we are looking for zeroes, we can rescale u to be a Z-LRS without loss of
generality. Then the companion matrix A has integer elements. Therefore
detA = ±ak−1 ∈ Z and is non zero as the recurrence relation for u is minimal.
Choose a prime p such that p ∤ ak−1. Then the reduction A of A modulo
p has determinant ±ak−1 mod p ̸≡ 0 mod p so A is invertible. Therefore by
Lagrange’s theorem, A

r
= I and so Ar = I + pA′ for some matrix kxk matrix

A′ with integer entries and r | |GLk(Fp)|. Taking di = αAjA′nβ, we have, for
some j ∈ {0, . . . , r − 1},

uj+rn = αArn+jβ = αAj(I + pA′)nβ =

n∑
i=0

(
n

i

)
pidi

Ann(u) is the finite union of the sets {j + rn | uj+rn = 0} which are finite or
(j + rn)n∈N by Proposition 3.1. This proves the theorem.

Remark 3.4. Note that we have an effective bound on r; we know that r <
(pk − 1)(pk − p) . . . (pk − pk−1). In the proof we rescaled the Q-LRS u into a
Z-LRS. As in Remark 2.1, the ratios of the characteristic roots λi are preserved.
Therefore λi ∈ OK where K = Q(λ1, . . . , λs) and OK is the ring of integers. As
Ar ≡ I mod p, we have λr ≡ 1 mod p i.e λr ∈ 1 + pOK . For i ̸= j, if λi

λj
= ω

is a root of unity of order n then λr
i , λ

r
j ≡ 1 mod p so ωr ≡ 1 mod p. But this

means that n | r as 1, ω, . . . , ωn−1 are distinct modulo p. This is because the
polynomial Tn − 1 is separable modulo p if p ∤ n - such p exists as there are
infinitely many primes p which do not divide ak−1 and there are only finitely
many ω. So we know that every root of unity among the ratios λi

λj
has an

order dividing r. Combining the bound proven in Theorem 3.3 and the effective
calculation of L as in Remark 2.2, we have a simple procedure to calculate r.
We also know that uL,r = (uLn+r)n≥0 is a non degenerate sequence. It can be
shown that the annihilator of a non degenerate sequence is finite or all of N as
in Theorem 2.1 of [12].

Finite Transcendental Extensions of Q
This section will be focused on extending Theorem 3.3 to Q(X1, . . . , Xm) -
the field of rational functions in m variables with rational coefficients. Let
u be a LRS of order k over Q(X1, . . . , Xm) with recurrence coefficients ai ∈
Q(X1, . . . , Xm) and companion matrixA ∈ GLk(Q(X1, . . . , Xm)). For (h1, . . . , hm) ∈
Qm, write u(h1, . . . , hm) for the Q-LRS which satisfies a recurrence with recur-
rence coefficients ai(h1, . . . , hm). Our proof will similarly work by rescaling the
LRS to a Z[X1, . . . , Xm] LRS and finding a prime which doesn’t divide the
determinant of A(h1, . . . , hm) for all m tuples (h1, . . . , hm) ∈ Zm. Since the
determinant is now a polynomial, we seek a lemma to ensure this.

Lemma 3.5. Let P ∈ Z[X1, . . . , Xm]. Then there is an odd prime p and infinite
sets H1, . . . ,Hm such that for (h1, . . . , hm) ∈ H1 × · · · ×Hm, p ∤ P (h1, . . . , hm).
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The following lemma will help us prove Lemma 3.5:

Lemma 3.6. Let P (X1, . . . , Xm) be a polynomial in m variables with coeffi-
cients in any field K. Suppose there are sets S1, . . . , Sm in K such that

1. For each i = 1, . . . ,m, |Si| > degXi
(P ).

2. For all (s1, . . . , sm) ∈ S1 × · · · × Sm, P (s1, . . . , sm) = 0.

Then P is the zero polynomial.

Proof. This is clear by induction.

Now we prove Lemma 3.5.

Proof of Lemma 3.5. Let p be an odd prime which doesn’t divide any coef-
ficient of P and suppose that p > max(degXi

(P )) for each i. Then P ∈
(Z/pZ)[X1, . . . , Xm], the reduction of P modulo p, is a non zero polynomial.
For i = 1, . . . ,m, let Si = {0, 1, . . . ,degXi

(P )}. By Lemma 3.6 with K =

Z/pZ, we have (s1, . . . , sm) ∈ Zm such that P (s1, . . . , sm) ̸= 0 so we have
p ∤ P (s1+n1p, . . . , sm+nmp) for all (n1, . . . , nm). With Hi = {si+np | n ∈ Z},
we get the desired result.

We now prove the Skolem-Mahler-Lech theorem for finite transcendental exten-
sions by reducing to the rational case:

Theorem 3.7. Let u be a LRS of order k with recurrence coefficients ai ∈
Q(X1, . . . , Xm). There is a prime p for which if r = |GLk(Fp)|!, there are
integers j1, . . . , jm ∈ {0, . . . , r− 1} (m may be zero) and a finite set S such that

Ann(u) = S ∪
m⋃
i=1

{ji + rq | q ∈ N}.

Proof. We can scale the LRS u by a non zero polynomial R ∈ Z[X1, . . . , Xm]
so that the recurrence coefficients ai ∈ Z[X1, . . . , Xm] as in Remark 2.1. Then
we have detA ∈ Z[X1, . . . , Xm]. By Lemma 3.5, we can find an odd prime p
and infinite subsets H1, . . . ,Hm of Z such that if (h1, . . . , hm) ∈ H1 × · · · ×Hm

then p ∤ detA(h1, . . . , hm). A(h1, . . . , hm) is the companion matrix associated to
u(h1, . . . , hm) so we know that Ann(u(h1, . . . , hm)) is quasi-periodic by Theorem
3.3 with period t < |GLk(Fp)|. Therefore r = |GLk(Fp)|! is a common period
for each Ann(u(h1, . . . , hm)). Finally, we claim that

Ann(u) =
⋂

(h1,...,hm)∈H1×···×Hm

Ann(u(h1, . . . , hm))

- this would show that Ann(u) is quasi-periodic with period r. To show both
inclusions, we know that if n ∈ Ann(u), un is zero for every input (h1, . . . , hm).
For the other direction, by Lemma 3.6, if un(h1, . . . , hm) = 0 for all (h1, . . . , hm) ∈
H1 × · · · ×Hm then un = 0. This completes the proof.

Like in the case of Q, the period r is bounded. We know r | |GLk(Fp)|! at best.
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The general case

Now we proceed to the general case of a field K of characteristic zero. We
reduce to the previous case of a finite transcendental extension of Q by the use
of the following lemma.

Lemma 3.8. Let L be a field with the following property P : If u is a L-LRS,
then Ann(u) is a quasi-periodic subset of N. Any finite algebraic extension K
of L also has property P .

Proof. Let K be an algebraic extension of degree d. It is a d dimensional vector
space over L so let α1, . . . , αd be d linearly independent linear forms from K to
L - these can be viewed as row vectors. Let u be a L-LRS. u can be expressed in
matrix form un = αAnβ as in (4). Define (uαi)n = αi(αA

nβ) = (αi ◦α)AnB =
γAnβ where αi ◦ α is interpreted as a composition of linear forms from K to L
while γ is viewed as a row vector. By Remark 2.4, we know (uαi

) is a L-LRS.
Therefore by property P , Ann(uαi

) is a quasi-periodic sequence. As the αi are
linearly independent, if s ∈ K, s = 0 if and only if αi(s) = 0. Therefore

Ann(u) =

d⋂
i=1

Ann(uαi).

So K has property P as Ann(u) is quasi-periodic.

We can now prove the Skolem-Mahler-Lech theorem for characteristic zero fields.

Theorem 3.9 (Skolem-Mahler-Lech for characteristic zero). Let K be a field
of characteristic zero and u be a K-LRS. Then Ann(u) is a quasi-periodic set.

Proof. Let u be a K-LRS with recurrence coefficients a0, . . . , ak−1. Let W =
{a0, . . . , ak−1, u0, . . . , uk−1}. Then u is a sequence in Q(W ) so without loss
of generality, assume that K = Q(W ). Let W ′ be a maximal subset of W
that is algebraically independent over Q. Then L = Q(W ′) is isomorphic to
Q(X1, . . . , Xm), the field of rational functions in m variables over Q, where
m = |W | (some elements may be repeated in W ). By definition of W ′, every
element w ∈ W\W ′ is algebraic over L so K is a finite algebraic extension of L.
Therefore, by Theorem 3.7 and Lemma 3.8, we are done.

Since this proof is based on that of Theorem 3.7, the period r of the arith-
metic progressions can be effectively determined. Therefore the Skolem Prob-
lem amounts to deciding whether the finite set is empty or not as there is an
effective procedure to decide whether Ann(u) is finite as shown in [2].

A reasonable question is to ask to what extent does the Skolem-Mahler-Lech
theorem hold in positive characteristic. An analogous statement doesn’t hold -
consider the LRS over Fp(X) with recurrence relation

un = (2x+ 2)un−1 − (x2 + 3x+ 1)un−2 + (x2 + x)un−3
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with u0 = −1, u1 = 0 and u2 = 2x2. This sequence has solution un = (x+1)n−
xn − 1. By Fermat’s little theorem, we know that upk = 0 for all k ∈ N which
is not a quasi-periodic set. The extension of the Skolem-Mahler-Lech theorem
can be found in [11] - this example is essentially the only way the analog of the
Skolem-Mahler-Lech theorem in positive characteristic fails.

4 Special Cases

Partial answers to the Skolem Problem can be attained by fixing some extra
conditions. One such condition is the order - the lower the order, the simpler
the resulting recurrence so the problem becomes more tractable. More specifi-
cally, imposing conditions on the characteristic roots of an LRS makes it easier
to control via its exponential-polynomial representation. For a Q-LRS u, the
first difficult case is order 3 LRS, particularly when u has 3 dominant roots -
3 roots equally large in modulus. This was settled by Mignotte [28] in 1975
when u is simple. Later, the 3 dominant roots case was fully solved and the
order 4 case for Q∩R-LRS was also settled independently by Mignotte, Shorey
and Tijdeman [29] and Vereshchagin [18] in 1984 and 1985 respectively. These
results are state of the art - they haven’t been improved outside of very excep-
tional special cases to this day. The following will outline a combination of the
methods in [29] and [18].

In this section we work with a Q-LRS u of order k with distinct character-
istic roots λ1, . . . , λl. Since we are looking for zeroes and there is an effective
algorithm to decompose u into a sequence of non degenerate LRS (Remark 2.2),
it suffices to work with non degenerate LRS. For a characteristic root λi, it is
dominant if |λi| ≥ |λj | for any other characteristic root |λj |. We say λi is domi-
nant with respect to vp if vp(λi) ≤ vp(λj) for the p-adic valuation vp of a prime
ideal p of OF where F = Q(λ1, . . . , λl) where vp is defined above. We assume
that u has r dominant roots where r ≤ l and label the characteristic roots in
order of modulus i.e |λ1| = · · · = |λr| > |λr+1| ≥ . . . |λl|.

Throughout this section, ci denote computable constants. Each of these are
computable by Proposition 2.5 and its following remark and so justification for
why a number is computable will only be provided if it isn’t immediate from
Proposition 2.5 and its following remark. We will prove the following theorems:

Theorem 4.1 (Decidability for 3 dominant roots). Let u = {um}∞m=0 be a
non degenerate Q-LRS such that r ≤ 3. Then there exists positive computable
numbers c1 and c2, depending only on u, such that

|um| ≥ |λ1|m exp(−c1(logm)2) (7)

for m ≥ c2.

With the effective bound c2, this gives a resolution of the Skolem Problem
for LRS with up to 3 dominant roots - in particular, for order 3 LRS. An
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analogous result won’t be found for r = 4 but instead for Q∩R-LRS with l = 4
charactersitic roots.

Theorem 4.2 (Decidability 4 characteristic roots). Let u be a non zero, non
degenerate Q ∩ R-LRS with l = 4 characteristic roots. Then every m such that
um = 0 is bounded by some computable constant, only depending on u.

A notable corollary is the decidability of the Skolem Problem for order 4 LRS.
To prove these theorems, we will use Baker’s theorem as in [1]. Let α1, . . . , αt

be non zero algebraic numbers and K = Q(α1, . . . , αt) with [K : Q] = d. Let
the heights of α1, . . . , αt−1 and αt be at most A′ and A ≥ 2 respectively. Then
we have the following theorem:

Theorem 4.3. There exists a computable number c3 > 0 depending only on
t, d, A′ such that for any δ with 0 < δ < 1

2 , the inequalities

0 < |b1 logα1 + · · ·+ bt logαt| <
(

δ

B′

)c3 logA

e−δB

have no solution in rational integers b1, . . . , bt−1 and bt ̸= 0 with absolute values
at most B and B′ respectively.

We also use the following consequence of Theorem 4.3, Lemma 1 of [34]:

Theorem 4.4. Let λ and µ be non zero algebraic numbers such that |λ| ≥ |µ|
and λ

µ isn’t a root of unity. Suppose that a1 and a2 are non zero algebraic
numbers of degrees at most D and heights at most H ≥ 3. Let n ≥ 2 be a
rational integer. Then there exist positive computable numbers c4, c5 depending
only on D,λ, µ such that

|a1λn + a2µ
n| ≥ |λ|nH−c4 logn (8)

when n ≥ c5 logH.

This theorem, along with a version to handle the r = 3 case, Theorem 4.8,
are key to proving Theorem 4.1. We also use a p-adic analog, due to van der
Poorten [39].

Theorem 4.5. Let p be a prime ideal of K lying above a rational prime p.
Suppose that b1, . . . , bt−1 and bt = −1 are rational integers of absolute value
at most B. There is a computable number c6 > 0 depending only on t, d and
A′ such that for any 0 < δ < 1, if δB < vp(α

b1
1 . . . αbt

t − 1) < ∞ then B ≤
c6δ

−1pd log(δ−1pd) logA.

Remark 4.6. Since the dependence on A is explicit, we can vary αt as long as it
is of bounded degree and belongs to some fixed number field K. A notable case

is if αt =
S(n)
T (n) for some n ∈ N and polynomials S, T with algebraic coefficients.

We know that αt is in the field F generated by the coefficients of S and T so we
can take K = F (α1, . . . , αt−1) and apply the theorem - notably αt has bounded
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degree. If the coefficients of S and T are computable then we know that the
height of αt is at most A = nv where v is some computable constant in terms of
these coefficients and the degree of S and T , by Proposition 2.5. An analogous
statement for a1 and a2 as in Theorem 4.4 is true too.

Now we prove the theorem on the sum of three terms, following the method in
[18]. First, we need to know that the sum is non zero, a detail Vereshchagin
didn’t cover so we use the following theorem from [29].

Theorem 4.7. Let a1, a2, a3 be non-zero algebraic numbers of degrees at most
D and heights at most H. Let γ1, γ2, γ3 be non zero algebraic numbers such that
at least one ratio γi

γj
for i ̸= j is not equal to a root of unity. Then if

a1γ
n
1 + a2γ

n
2 + a3γ

n
3 = 0 (9)

then n ≤ c7 logH for a computable number c7 depending only on γ1, γ2, γ3 and
D.

Once we have proven this theorem, we can prove the following:

Theorem 4.8. Suppose a1, a2, a3, γ1, γ2, γ3 are as in Theorem 4.7 and also that
the γi are distinct and |γ1| = |γ2| = |γ3|. Then there are computable positive
constants c8, c9, depending only on γ1, γ2, γ3, H,D such that for n ≥ c8, we have

|a1γn
1 + a2γ

n
2 + a3γ

n
3 | ≥ |γ1|nn−c9 logH (10)

We begin with the proof of Theorem 4.7. We follow the presentation in [29]
where I have filled in important details in their argument.

Proof of Theorem 4.7. Without loss of generality, assume that γ1

γ2
is not a root

of unity. Let L = Q(a1, a2, a3, γ1, γ2, γ3) and note that [L : Q] ≤ c10 by the tower
law. In this proof, every computable constant depends only on γ1, γ2, γ3 and D.
Whenever we apply Theorem 4.3 or 4.5, recall that the heights of α1, . . . , αt−1

and αt are at most A′ and A ≥ 2 respectively and that they all belong to a
number field K of degree d.

We will use (9) to reduce to equations with two terms. Then upon supposing
γ1

γ2
is a unit, we can find a prime ideal to let us use Theorem 4.5 and when it

isn’t a unit, we use Theorem 4.3. These will give us the desired bound on n.
Suppose that γ1

γ2
is not a unit. Then there is a prime ideal p ◁ OL such that

vp(
γ1

γ2
) ̸= 0. By permuting indices, we may suppose it is positive. By (9), we

have

a1

(
γ1
γ2

)n

= −a2 + a3

(
γ3
γ2

)n

(11)
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and a2γ
n
2 + a3γ

n
3 ̸= 0. By considering the order of p dividing both sides of (11),

we have

n ≤ vp

((
γ1
γ2

)n)
= vp(a2a

−1
1 ) + vp

(
−
(
γ3
γ2

)n
a3
a2

− 1

)
≤ c11 logH + vp

(
−
(
γ3
γ2

)n
a3
a2

− 1

)
Now if vp(−(γ3

γ2
)n a3

a2
− 1) ≥ n

2 then we have n ≤ c12 logH. If not, then we can

apply Theorem 4.5. Set t = 2, α1 = γ3

γ2
, α2 = −a2

a3
, δ = 1

2 , B = n. We have

d ≤ c13, p ≤ c14, A
′ = c15, A = Hc16 . Then we have that n ≤ c17 logH as

required.

Therefore we may assume that γ1

γ2
is a unit. By Theorem 2.7, as γ1

γ2
isn’t a

root of unity, there is an embedding σ of L such that |σ(γ1)| > |σ(γ2)|. By
applying σ to (9), we can assume that |γ1| > |γ2| without loss of generality. By
(9), we have a1γ

n
1 + a3γ

n
3 ̸= 0. Therefore

0 ̸= |a1γn
1 + a3γ

n
3 | = |a1γn

1 |
∣∣∣∣−(γ3

γ1

)n
a3
a1

− 1

∣∣∣∣
We now apply Theorem 4.3 to

|b1 logα1 + · · ·+ bt logαt| =
∣∣∣∣n log

(
γ3
γ1

)
+ V log(−1) + log

(
a3
a1

)∣∣∣∣
where all logarithms have their principal values and |V | ≤ 2n + 3 is a rational
integer to ensure this. Set t = 3, b1 = n, b2 = V, b3 = 1 and α1 = γ3

γ1
, α2 =

−1, α3 = a3

a1
and δ = min( 14 log |

γ1

γ2
|, 1

4 ). Then we can apply Theorem 4.3 with

d ≤ c13, logA
′ = c18, logA = c19 logH,B′ = 1,B = 2n+ 3 so we get∣∣∣∣n log

(
γ3
γ1

)
+ V log(−1) + log

(
a3
a1

)∣∣∣∣ ≥ ( δ

B′

)c20 logA

e−δB

= δc21 logHe−(2n+3)δ

= H−c22e−(2n+3)δ as δ ≤ 1

4

≥ H−c23

∣∣∣∣γ1γ2
∣∣∣∣−

n
2

as δ ≤ 1

4
log

∣∣∣∣γ1γ2
∣∣∣∣

The upper bound of 1
4 on δ is to ensure δ < 1

2 so we can apply Theorem 4.3.
Then we claim that for all positive integers n, there is a computable constant
c24 such that ∣∣∣∣−(γ3

γ1

)n
a3
a1

− 1

∣∣∣∣ ≥ H−c24

∣∣∣∣γ1γ2
∣∣∣∣−

n
2

(12)
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Suppose that this inequality isn’t true, that for any computable constant c25,
there is some n for which∣∣∣∣−(γ3

γ1

)n
a3
a1

− 1

∣∣∣∣ < H−c25

∣∣∣∣γ1γ2
∣∣∣∣−

n
2

(13)

Then since log is Lipschitz around 1 and log 1 = 0, for some real constant Z we
have that∣∣∣∣log(−(γ3

γ1

)n
a3
a1

)∣∣∣∣ < Z

∣∣∣∣−(γ3
γ1

)n
a3
a1

− 1

∣∣∣∣ < ZH−c25

∣∣∣∣γ1γ2
∣∣∣∣−

n
2
= H−c26

∣∣∣∣γ1γ2
∣∣∣∣−

n
2

Now

log

(
−
(
γ3
γ1

)n
a3
a1

)
= log(−1) + n log

(
γ3
γ1

)
+ log

(
a3
a1

)
+ 2miπ

= (2m+ 1) log(−1) + n log

(
γ3
γ1

)
+ log

(
a3
a1

)
where |m| ≤ n+1 is an integer chosen so that each logarithm is principal valued.
This contradicts the bound we have already established on this quantity, giving
us (12).

Since |a1| ≥ H−D, we conclude that

|a1γn
1 + a3γ

n
3 | ≥ |γn

1 |
∣∣∣∣γ1γ2
∣∣∣∣−

n
2
H−c27

Also, as |a2| ≤ HD, we have

|a2γn
2 | ≤ HD|γ2|n

So by (9), |a1γn
1 + a3γ

n
3 | = |a2γn

2 | so

|γ1|n
∣∣∣∣γ1γ2
∣∣∣∣−

n
2
H−c27 ≥ HD|γ2|n =⇒

∣∣∣∣γ1γ2
∣∣∣∣
n
2
≤ Hc28

Since |γ1| > |γ2|, we get n ≤ c29 logH, completing the proof of the theorem.

Now we prove Theorem 4.8, using methods in [18] with details filled in.

Proof of Theorem 4.8. Let ε = a3+a1(
γn
1

γn
3
)+a2(

γn
2

γn
3
). By Theorem 4.7, we know

that ε ̸= 0 if n ≥ c30, depending on γ1, γ2, γ3 and D. Then (x1, x2) = (
γn
1

γn
3
,
γn
2

γn
3
)

is a solution to the equation

a1x1 + a2x2 + (a3 − ε) = 0 (14)
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Note that |x1| = |x2| = 1. We will solve the system for ε = 0 and use these
solutions to approximate the solutions for ε ̸= 0. Combining this with Theorem
4.4, we get a lower bound on ε. We aim to prove a lower bound on |ε| so we are
free to assume upper bounds on |ε|.

Let a′3 = a3−ε and define real variables v1, v2, w1, w2 such that vj+ iwj =
ajxj

a′
3
.

Then

v1 + v2 + i(w1 + w2) + 1 =
a1x1 + a2x2 + a3 − ε

a3 − ε
= 0

Since these variables are real, we obtain v1+v2+1 = 0 and w1 = −w2. Moreover,
v2j + w2

j = |ajxj

a′
3
|2 = |aj

a′
3
|2. This yields a system of quadratic equations which

can be solved, yielding the solutions

x1(ε) =
a′3(|a2|2 − |a1|2 − |a′3|2 ± i

√
D(ε))

2a1|a′3|2

x2(ε) =
a′3(|a1|2 − |a2|2 − |a′3|2 ∓ i

√
D(ε))

2a2|a′3|2

D(ε) = ((|a1|+ |a2|)2 − |a′3|2)(|a′3|2 − (|a1| − |a2|)2)

Without loss of generality, assume that |a1| ≤ |a2| ≤ |a3|. Solutions to this
system exist if only if D(ε) > 0. For ε = 0, we have solutions if and only if
|a3| < |a1| + |a2| and |a3| > |a2| − |a1|, geometrically this corresponds to the
vectors in (14) forming the sides of a triangle. From these expressions, we see
that x1(0) and x2(0) can be expressed entirely in terms of a1, a2, a3 and their
moduli, so they are algebraic and their heights and degrees are computable in
terms of H and D, the heights and degrees of a1, a2, a3.

Now we estimate |x1(ε) − x1(0)| with both being chosen with the same sign
of the square root. Consider two cases, D(0) ≥ 0 and D(0) < 0. Suppose

|ε| < |a3|
4 , this assumption simplifies calculations.

Case 1: D(0) ≥ 0. Split |x1(ε) − x1(0)| into two summands by the triangle
inequality:∣∣∣∣a′3(|a2|2 − |a1|2 − |a′3|2)

2a1|a′3|2
− a3(|a2|2 − |a1|2 − |a3|2)

2a1|a3|2

∣∣∣∣ ≤ A1|ε|
|a1|∣∣∣∣∣a′3

√
D(ε)

2a1|a′3|2
−

a3
√
D(0)

2a1|a3|2

∣∣∣∣∣ ≤ A2|ε|
|a1|

+

∣∣∣∣∣
√

D(ε)−
√
D(0)

a1a3

∣∣∣∣∣ ≤
{
A3

√
|ε| D(ε) = 0

A4|ε| D(ε) > 0

where A1, . . . , A4 are constant functions of |a3| and
√

D(0), calculated with our
upper bound on |ε|.

Case 2: D(0) < 0. If D(0) < 0 then we have |a3| > |a2|+ |a1| and since D(ε) is
continuous, we can find an computable δ1, in terms of D(0) and a3, such that
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if |ε| < δ1 then D(ε) < 0 so that (14) has no solutions. In this case,

|a1γn
1 + a2γ

n
2 + a3γ

n
3 | = |γ3|n|ε| ≥ |γ3|n(|a3| − |a2| − |a1|) > 0

as |x1| = |x2| = 1 which is in the required form. So we can assume D(0) ≥ 0.

Our overall bound therefore is

|x1(ε)− x1(0)| ≤
(
A1 +A2

|a1|
+A4

)
|ε|+ A3

|a1|
√
|ε| = O(

√
|ε|)

by taking |ε| < 1. Set A = A1+A2

|a1| +max( |A3|
|a1| , A4) and δ = min(1, δ1,

|a3|
4 ). Then

we have that for |ε| < δ, if x1(ε), x2(ε) are solutions of (14), then x1(0), x2(0)
are defined and that

|x1(ε)− x1(0)| ≤ A
√

|ε| (15)

Now we aim to use Theorem 4.4 to get a lower bound on ε. Recalling the
beginning, a particular solution of (14) was x1(ε) = (γ1

γ3
)n. Then

|x1(ε)− x1(0)| =
∣∣∣∣(γ1

γ3

)n

− x1(0)

∣∣∣∣ = |γ3|−n|γn
1 − x1(0)γ

n
3 |

Since x1(0) is algebraic and of height at most Hc31 , we can apply Theorem 4.4
with the constants as 1,−x1(0) and λ = γ1, µ = γ3 to get, for sufficiently large
n ≥ c32, that

|x1(ε)− x1(0)| ≥
∣∣∣∣γ1γ3
∣∣∣∣n H−c33 logn = n−c33 logH

If x1(0) = 0 then this conclusion is clear. If γ1

γ3
is a root of unity then we can find

the same conclusions for γ2

γ3
as it won’t be a root of unity, giving c33 dependence

on γ2 too. Combining (15) and the above gives |ε| > min{δ, A−2n−2c33 logH}
which proves the theorem. Note that c32, c33 depend on the height and degree
of x1(0) (which depends on the heights and degrees of a1, a2, a3) and γ1, γ2, γ3
as claimed.

Remark 4.9. If one of the ratios is a root of unity then the dependence on c9
in (10) can be removed by restricting the range of n. This is because if γ1

γ3
is a

root of unity, its order d is computable as in [21] Section II A. Then if n is a
multiple of d, we have

|a1γn
1 + a2γ

n
2 + a3γ

n
3 | =

∣∣∣∣a1 + a2 + a3

(
γ2
γ1

)n∣∣∣∣ |γ1|n
As γ2

γ1
isn’t a root of unity, we can use Theorem 4.4. The conditions of the

theorem are satisfied unless a1 = −a2 in which case the result is clear.
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We now have the tools to prove Theorems 4.1 and 4.2. We assume that u has
exponential-polynomial representation un =

∑l
i=1 Qi(n)λ

n
i and has recurrence

coefficients ai. For Theorem 4.1, we follow the presentation in [29] with a more
careful consideration of repeat dominant roots.

Proof of Theorem 4.1. Consider a non degenerate Q-LRS u with r ≤ 3 i.e at
most 3 dominant roots. Let Λ = Q1(n)λ

n
1 + · · · +Qr(n)λ

n
r . Recall that the λi

are distinct and say they are of multiplicity νi in the characteristic polynomial
g of u. Then we know that, by the triangle inequality,

|un| = |Λ + (Qr+1(n)λ
n
r+1 + · · ·+Ql(n)λ

n
l |

≥ |Λ| − nc235 |λr+1|n

for n ≥ c34 as λr+1 is the largest non dominant root. Here, c35 is a constant
computable in terms of the heights and degrees of ai and λi as it is dependent on
the degrees of Qj and the heights of its coefficients for j = r+1, . . . , l. Therefore
|Λ| is the leading order term so it suffices to show that

|Λ| ≥ |λ1|n exp(−c36(log n)
2) for n ≥ c37 (16)

We aim to use Theorems 4.4 and 4.8 which we can use as u is a non denegerate
LRS. We can find a better bound if we have a dominant root of greatest mul-
tiplicity (among the dominant roots), suppose this is the case. Without loss of
generality, say λ1 is this dominant root of greatest multiplicity and that νi ≥ νj
for 1 < j ≤ r. Then

|Λ| = |(bν1−1n
ν1−1 + . . . )λn

1 + · · ·+ (· · ·+ dνr−1n
νr−1)λn

r |

≥ nν1−1|λ1|n
(
|bν1−1| − · · · − |dνr−1|

nν1−νr

)
We know that for any x ∈ Q, |x| is bounded by an expression in its height and
degree so we can choose n ≥ c38, giving us a stronger bound than (16). This
covers the r = 1 case too.

For r = 2, we can apply Theorem 4.4 with a1 = Q1(n), a2 = Q2(n), λ = λ1, µ =
λ2 and by Remark 4.6, logH = c39 log n giving

|Q1λ
n
1 +Q2λ

n
2 | ≥ |λ1|nH−c40 logn = |λ1|n exp(−c41(log n)

2) (17)

for n ≥ c42 log n so n ≥ c43 as expected. For r = 3, we apply Theorem 4.7 (so
that we know the sum is non zero) and Theorem 4.8 with ai = Qi(n), γi = λi

for 1 ≤ i ≤ 3 and logH = c44 log n again to get

|Q1λ
n
1 +Q2λ

n
2 +Q3λ

n
3 | ≥ |λ1|nn−c45 logn = |λ1|n exp(−c46(log n)

2)

for n ≥ c47 in the same way as above, completing the proof.
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In the case that the λi are simple roots, we recover exactly the same result as
shown in [28]. Next, we prove Theorem 4.2, following the presentation in [29].
The proof of this theorem in [29] is for 4 characteristic roots, Theorem 2 in [29],
which is stronger than Vereshchagin’s Theorem 4 which considers only order 4
Q ∩ R-LRS [18].

Proof of Theorem 4.2. Let u be a non degenerate Q∩R-LRS with characteristic
polynomial g which has roots λ1, . . . , λ4.

Let L = Q(u0, . . . , uk−1, a0, . . . , ak−1). By Theorem 4.1, we can assume r = 4,
that there are 4 dominant roots. As in the Remark 2.1, we can rescale u so
that the recurrence coefficients ai ∈ OL using geometric scaling. Then the
characteristic roots are roots of a monic polynomial g ∈ OL[X] so λi ∈ OL.
Next, we know that since u is non degenerate, each characteristic root λi is not
real - otherwise, there would be at least two real roots whose ratio is ±1. 1
is not possible as the λi are distinct and −1 isn’t as u is non degenerate. So
without loss of generality, assume that

λ1 = λ3 and λ2 = λ4 (18)

Let K = Q(λ1, . . . , λ4), h be the class number of K and G = Gal(K/Q). We
assume that um = 0 so our aim is to find an upper bound on m. Therefore,
we may freely assume any lower bound on m. We will show there are at most
two dominant roots with respect to some p-adic valuation and derive our bound
from Theorem 4.5.

Suppose that t = λ1

λ3
is a unit. By Theorem 2.7, as t is not a root of unity, there

is some σ ∈ G such that |σ(λ1)| > |σ(λ3)|. Then σ(u) is a LRS with r ≤ 3 so
σ(um) = 0 for m ≥ c48 sufficiently large by Theorem 4.1. So we may assume
that m ≥ c48.

Now suppose that t is not a unit. Then

gcd((λh
1 ), . . . , (λ

h
4 )) = (Π)

for some Π ∈ OK . Setting Λi = λh
i Π

−1 for 1 ≤ i ≤ 4, then Λi ∈ OK and

gcd((Λh
1 ), . . . , (Λ

h
4 )) = (1)

Since |λ3| = |λ4|, by (18) we have Λ1Λ3 = Λ2Λ4. We know that Λ1,Λ3 ∈ OK so
Λ1Λ3 isn’t a unit. By considering the factorisation of (Λ1Λ3), there is a prime
ideal p ◁OK such that p | (Λ1Λ3) so p | (Λ2Λ4). Without loss of generality, we
can assume that

p | (Λ3) and p | (Λ4) (19)

So Λ1,Λ2 are our two p-adically dominant characteristic roots. Now we aim
to apply Theorem 4.5. Take m = nh + q with 0 ≤ q < h and define zi(X) =
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Qi(X)λq
i for 1 ≤ i ≤ 4. Then n+ 1 > mh−1. Therefore we have n ≥ m

2h ≥ c48
2h .

Since um = 0, by multiplying both sides of the exponential polynomial represen-
tation by Π−n we get z1(m)Λn

1 + z2(m)Λn
2 = −z3(m)Λn

3 − z4(m)Λn
4 . Counting

powers of p on both sides, we get

n ≤ vp(∆)

where ∆ = z1(m)Λn
1 +z2(m)Λn

2 . This is because on the LHS we have vp(∆) and
on the RHS we have at least n by (19). We want to show ∆ ̸= 0 by Theorem 4.4
which we can apply as we know Λ1

Λ2
isn’t a root of unity. The theorem gives us

∆ ̸= 0 for sufficiently large n. More specifically, we need n to be larger than the
bound required in Theorem 4.4 which only depends on Λ1,Λ2 and the degrees
and heights of Q1(m), Q2(m) - the degree is constant and the height is at most
c49 log n. As n ≥ m

2h , by taking c48 large enough, this can be done - we need
n ≥ c50 log n which is true for n ≥ c51.

We have p|(Λ3) and p|(Λ4) and the gcd of the (Λi) is (1) so without loss of
generality, assume p ∤ Λ1. Then

vp(∆) = vp(z1(m)Λn
1 + z2(m)Λn

2 )

= vp

(
z2(m)

(
Λ2

Λ1

)n

+ z1(m)

)
(as vp(Λ1) = 0)

= c52 logm+ vp

(
−
(
Λ2

Λ1

)n
z2(m)

z1(m)
− 1

)
where vp(z1(m)) = c52 logm (from the powers of m) and the second term has
been cast in the form to apply Theorem 4.5. Set t = 3, α1 = Λ2, α2 = Λ−1

1 , α3 =

− z1(m)
z2(m) , d = c53, δ = 1

4h , b1 = b2 = n, b3 = −1. p lies above a rational prime p

and so by Remark 2.6, p = c54. A is the height of z2(m)
z1(m) so logA = c55 logm.

Let B = n ≥ m
2h . Then by Theorem 4.5, if

δB =
n

4h
≤ vp

(
−
(
Λ2

Λ1

)n
z2(m)

z1(m)
− 1

)
then n ≤ c56 logm. Therefore m ≤ c57 logm as n ≥ m

2h so m ≤ c58 and we’d be
done. Otherwise, we have

n ≤ vp(∆) ≤ c52 logm+ vp

(
−
(
Λ2

Λ1

)
z2(m)

z1(m)
− 1

)
≤ c52 logm+

n

4h

Therefore we get m ≤ c59, completing the proof.

Our proof of Theorem 4.2 applies more generally than to just 4 characteristic
roots - it applies to any Q∩R-LRS with at most two dominant roots with respect
to some p adic valuation. This motivates the definition of the MSTV class.
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Definition 4.10 (MSTV class). The Mignotte-Shorey-Tijdeman-Vereshchagin
(MSTV) class consists of all Z-LRS that either have at most three dominant
roots in modulus or at most two dominant roots with respect to some p-adic
valuation.

Remark 4.11. This covers many cases of order 5 LRS. It is shown in [20]
and the appendix of [3] that an order 5 Z-LRS u (also applies to Q-LRS by
rescaling) which don’t belong to the MSTV class must have an exponential-
polynomial representation un = α1λ

n
1 + α1λ1

n
+ α2λ

n
2 + α2λ2

n
+ α3λ

n
3 where

αi, λi are algebraic, |λ1| = |λ2| > |λ3|, λ1, λ2, λ3 aren’t all units, λ3 ∈ R and
that |α1| ≠ |α2| if u is non degenerate.

5 The Bi-Skolem Problem

The unconditional results of the previous section were established in the 1980s.
By introducing the notion of linear recurrence bi-sequences (LRBS), the MSTV
class can be extended to include reversible Z-LRS of order up to 7, that is,
Z-LRS for which ak−1 = ±1. The Bi-Skolem Problem, the analog of the Skolem
Problem for LRBS is introduced along with the Skolem Conjecture, a proposed
criterion for the resolution of the Bi-Skolem problem for simple LRBS. A Turing
reduction of the Skolem Problem for LRS of order up to 5 to the Bi-Skolem
Problem for LRBS of order up to 5 is demonstrated. With the p-adic Schanuel
Conjecture, this Turing reduction will be extended to all orders of LRS and
LRBS. We will detail these results, found in [20] and [3].

Main results

In this section, we will detail the main results to be proven. The first main
result is an unconditional result for a specific type of Z-LRS.

Theorem 5.1. The Skolem problem for reversible Z-LRS of order 7 or less is
decidable.

Next, the most important result, is a resolution of the Skolem Problem subject
to two conjectures:

Theorem 5.2. The Skolem Problem reduces to the Bi-Skolem Problem subject
to the weak p-adic Schanuel Conjecture. In particular, the Skolem Problem for
simple Q-LRS is decidable subject to the weak p-adic Schanuel Conjecture and
the Skolem Conjecture.

The reduction to simple Q-LRS is required by the Skolem Conjecture, as seen
in its statement. The requirement of the p-adic Schanuel Conjecture can be
removed for LRS of order up to 5:

Theorem 5.3. There is a Turing reduction from the Skolem Problem for Q-
LRS of order at most 5 to the Bi-Skolem Problem for Q-LRBS of order at most
5. In particular, the Skolem Problem for Q-LRS of order at most 5 is decidable
assuming the Skolem Conjecture.
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The proof of the last two theorems will give an algorithm that computes the
set of zeroes of a non degenerate simple Q-LRBS. It produces a certificate when
all zeroes have been found. The conjectures assumed in (5.2) are to ensure the
termination of this algorithm.

Definitions and Preliminaries

In this section, we will work with Q-LRS and Z-LRS - if not specified, we mean
a Q-LRS. When looking for zeroes, we can always rescale a Q-LRS to a Z-LRS.
By taking a Q-LRS u and running the recurrence backwards, the recurrence

relation (1) defines a linear recurrence bisequence (LRBS) {uk}∞k=−∞ =
↔
u. We

will refer to LRBS by u if the corresponding LRS is not being considered and

by
↔
u otherwise.

With this, we can now state the Skolem Conjecture:

Conjecture 5.4 (Skolem Conjecture). Let
↔
u be a simple Q-LRBS satisfying

(1) with a0, . . . , ak−1 and u0, . . . , uk−1 in Z. Then
↔
u has no zero if and only if

for some integer m ≥ 2 such that gcd(m, ak−1) = 1, we have that for all n ∈ Z,
un ̸≡ 0 mod m.

The Skolem Conjecture gives us means to detect zeroes - if a simple LRBS has
no zero, this is witnessed modulo some integer m. This conjecture applies only
to LRBS - we can take the Fibonacci sequence {0, 1, 1, 2, . . . } and take a shifted
Fibonacci sequence {1, 1, 2, . . . } - the criteria cannot detect the zero because it
starts at m ≥ 2. Simplicity also cannot be removed; consider the LRBS given by
the recurrence un+2 = 4un+1 − 4un with u0 = 1, u1 = 6. Then un = (2n+ 1)2n

so un ̸= 0 for all n ∈ Z but for any integer m ≥ 2, un ≡ 0 mod m for infinitely
many integers n, as in [20]. Some progress has been made on the Skolem Con-
jecture, for Q-LRBS, it has been shown to hold for order 2 [6] and some cases
of order 3 [33, 32]. Despite the similarity between the Skolem Conjecture and
Skolem Problem, the truth of the Skolem Conjecture doesn’t imply decidability
of the Skolem Problem (nor the converse).

This conjecture immediately gives us a procedure to decide this following analog
of the Skolem Problem for simple Q-LRBS:

Problem 5.5 (Q Bi-Skolem problem). Given a Q-LRBS
↔
u, does it contain a

zero?

The next conjecture we make use of is the weak p-adic Schanuel Conjecture,
Conjecture 3.10 of [8]:

Conjecture 5.6 (Weak p-adic Schanuel Conjecture). Let α1, . . . , αs be non-
zero algebraic numbers contained in a finite extension field E of Qp. Let
logp : E× → E be the p-adic logarithm normalised so that logp(p) = 0. If
logp α1, . . . , logp αs are linearly independent over Q, then logp α1, . . . , logp αs

are algebraically independent over Q.
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A useful theorem is the following special case of Conjecture 5.6 - a p-adic analog
of Baker’s theorem.

Theorem 5.7. Let α1, . . . , αs ∈ 1 + pZp be algebraic over Q and such that
logp α1, . . . , logp αs are linearly independent over Q. Then β0 + β1 logp α1 +
· · ·+ β logp αs ̸= 0 for all β0, . . . , βs ∈ Qp that are algebraic over Q and not all
zero.

It will also be useful to have a theorem on multiplicative dependence in a number
field K. The following result from [26] establishes this:

Theorem 5.8. Let K be a number field of degree D over Q. For s ≤ 1, let
λ1, . . . , λs be non zero elements of K having height at most H over Q. Then
the group of multiplicative relations

L = {(k1, . . . , ks) ∈ Zs : λk1
1 . . . λks

s = 1}

is generated (as an additive subgroup of Zs) by a collection of vectors whose
entries have absolute value bounded by B where B is computable in terms of H
and D.

Proving the unconditional result

This section is focused on establishing Theorem 5.1. For a Z-LRS, the LRBS

procedure may turn give a LRBS
↔
u which takes rational values. If

↔
u is a

sequence of integers then we say that u is reversible. A result of [13] shows that
a Z-LRS is reversible if and only if ak−1 = ±1.

Claim 5.9. If u is a reversible Z-LRS then its decomposition into subsequences
preserves reversibility. That is, the LRS uL,m = (uLn+m)n∈N, is reversible for
any positive integers L,m.

Proof. Let u be a Z-LRS with characteristic polynomial g and recurrence coeffi-
cients ai for 0 ≤ i ≤ k−1. We know that reversibility is equivalent to ak−1 = ±1
by [13]. We first show that this condition is equivalent to each characteristic
root λi being a unit in OK .

Let K be the splitting field of g. Since u is a Z-LRS, we know that λj ∈ OK

where λj for 1 ≤ j ≤ l are the characteristic roots of u. We know that ak−1 is,
up to some sign, the product of the characteristic roots so each characteristic
root is a unit in OK .

Conversely, if all the characteristic roots are units in OK then their product is
too. The product of all characteristic roots is rational so it must be ±1.

Now when we pass to subsequences uLn+m, the characteristic roots are Lth

powers of those for un so are also units so these LRS are also reversible. In par-
ticular, this holds for the decomposition into non degenerate LRS as in Remark
2.2.
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Now we prove Theorem 5.1.

Proof of Theorem 5.1. We will show that a non degenerate reversible Z-LRS of
order 7 has at most three dominant roots in modulus so it belongs to the MSTV
class. To do this, we’ll show that no monic polynomial g ∈ Z[X] with degree at
most 7 and constant term ±1 satisfies the following two properties:

(P1) g has at least four distinct roots of maximum modulus.

(P2) No quotient of two distinct roots of g is a root of unity.

We will then apply this to the characteristic polynomial of u which is a monic
polynomial in Z[X] to prove the theorem. Suppose to the contrary that g has
these properties. Let K be the splitting field of g and let G = Gal(K/Q). We
know by (P2) that g cannot have two distinct real dominant roots, otherwise
their ratio is −1. By (P1), g has at least four distinct dominant roots. By
Theorem 2.7, the dominant roots have modulus strictly greater than 1 otherwise
they would all be roots of unity, contradicting (P2). Since the roots of g are
units in OK , they have norm ±1 so any dominant root must have a conjugate of
modulus strictly less than 1 - a non dominant conjugate. There are at least three
complex dominant roots and so there are at least least two complex conjugate
pairs of dominant roots which we will denote by λ1, λ1, λ2, λ2. These four are
all dominant roots. Since every dominant root has a non dominant conjugate,
deg(g) ≥ 5 - denote by σ the automorphism of K such that σ(λ1) = t for some
non dominant root t. We have

λ1λ1 = λ2λ2 (20)

and so

τ(λ1)τ(λ1) = τ(λ2)τ(λ2) (21)

for all τ ∈ G. These facts will be used throughout the proof - a common theme
will be using (20) and (21) derive contradictions by either considering the mod-
ulus of both sides or by contradicting (P2). We know 5 ≤ deg(g) ≤ 7 and so
will work through each case. In each case, λ1 will be a dominant root and t a
non dominant root and σ ∈ G is the element such that σ(λ1) = t as this exists
in every case.

Degree 5: First, we take deg(g) = 5. By (21) with σ, we have tσ(λ1) =
σ(λ2)σ(λ2) - a contradiction as σ maps every other root to a dominant root as
there is only one non dominant root.

Degree 6: Next, take deg(g) = 6. We can’t have σ(λ1) non dominant oth-
erwise, as there are at least four dominant roots, we must have σ(λ2) and
σ(λ2) dominant, contradicting (21). So σ(λ1) is dominant and at most one of
{σ(λ2), σ(λ2)} is dominant - they cannot both be dominant or it would contra-
dict (21). Therefore the final characteristic root must have the same modulus
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as t for (21) to hold. By (P2), as there is a second non dominant root v with
the same modulus as t, we know that t is not real so v = t. Working through
cases with σ, σ−1 and complex conjugation, we see G is transitive so g is irre-
ducible. Therefore the order of G is divisible by 6 so by Cauchy’s theorem, it
must contain an element τ of order 3 which is either a 3 cycle or the product of
two 3 cycles.

By the above, a 3 cycle must either map dominant roots to another, possibly
the same, dominant root or map at least two dominant roots to a non dominant
root. Therefore we cannot have both t, t in the same 3 cycle (if so, t or t must
map to the other) so if τ(t) ̸= t, it must contain another 3 cycle mapping t to
some dominant root. Therefore the possible cases are τ = (D1D2t)(D3D4t) or
a 3 cycle of the form τ = (λ1λ2λ1) - where λ1, λ2 may have been relabelled.
We claim that τ must be a product of 3 cycles τ = (D1D2t)(D3D4t) where
D1, . . . , D4 are the dominant roots.

Suppose, in hope of a contradiction, that τ = (λ1λ2λ1). For (21) to hold for
τ , we must have τ(λ2) dominant i.e it must be equal to λ2. Then (21) gives

λ2λ1 = λ1λ2 - multiplying by λ1λ2 and dividing by (20), we get λ2
2 = λ1

2
which

contradicts (P2). This proves the claim.

Next we consider different cases of the form of τ to derive a contradiction.

Case 1: Suppose that some 3 cycle in τ contains a complex conjugate pair.
Without loss of generality, we can write τ = (λ1λ1t)(λ2λ2t). Applying τ twice
to (20), we get both λ1t = λ2t and tλ1 = tλ2. Multiplying these two equations

together and dividing by (20) we get t2 = t
2
, contradicting (P2).

Case 2: Suppose neither 3 cycle in τ contains a complex conjugate pair. By
relabelling dominant roots, we can write τ = (λ1λ2t)(λ2λ1t) as both λ2 and λ2

cannot map to non dominant roots. From (21), we have

λ2t = tλ1 (22)

We consider two subcases.

Subcase 1: Suppose that λ1λ2t is a root of unity. Multiply (22) by λ1t
2 to get

λ1λ2t
2t = λ1λ1t

3. Dividing each side by its complex conjugate, we find that

λ1λ2t

λ1λ2t
=

(
t

t

)3

,

contradicting (P2).

Subcase 2: Next, suppose λ1λ2t is not a root of unity. By Theorem 2.7, it has
some conjugate φ(λ1λ2t) = φ(λ1)φ(λ2)φ(t) with modulus greater than 1, for
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some φ ∈ G. But a product of three roots of g having modulus greater 1 means
all three must be dominant as the product of two dominant roots and a non
dominant root must have modulus 1. This is because the remaining three roots
are complex conjugates of these three and the product of all 6 roots must be ±1
as g has constant term ±1. So we have some φ ∈ G such that φ(λ1),φ(λ2) and
φ(t) are dominant. At most one of φ(λ1) or φ(λ2) can be dominant (as we have
four dominant roots). For φ to preserve (20), we would need both to be non
dominant. But then (22) is not preserved by φ. This contradiction completes
the proof for deg(g) = 6.

Degree 7: Finally, let deg(g) = 7. In the same way as the degree 6 case, we
have two complex conjugate pairs of dominant roots λ1, λ1, λ2, λ2 and a pair
of non dominant roots t, t and that these are contained in an orbit of G. But
by the degree 6 case, we know that they cannot be the roots of a degree 6
polynomial so g doesn’t have a degree 6 factor, meaning it’s irreducible. The
remaining root s is real. s cannot be dominant because it would satisfy the
equation λ1λ1 = λ2λ2 = s2 - applying σ such that σ(λ1) = t, we must have that
σ’s image contains three non dominant roots which is not possible.

By the irreducibility of g, we know that the order of G is divisible by 7 so there
must be an element τ of order 7 - a 7 cycle. To preserve (20), τ must map
exactly two dominant roots to non dominant roots. Label the dominant roots
by D1, D2, D3, D4 and the non dominant roots by N1, N2, N3.

The three cases are τ = (D1D2N1N2D3D4N3), (D1D2D3N1D4N2N3) and
(D1D2D3N1N2D4N3).

Case 1: In the first case, τ2 maps three dominant roots to non dominant roots,
so it doesn’t preserve (20).

In both cases 2 and 3, any pair of dominant roots is mapped to some pair of
non dominant roots by some power of τ . This means τ doesn’t preserve (21)
as we can map λ1, λ1 to non dominant roots and only one of λ2 or λ2 can be
mapped to a non dominant root. This completes the proof for degree 7 g and
so, the proof of the theorem.

This proof relies on very specific numbers of dominant roots so it cannot be
extended generally. Indeed, as in Section 4.2 of [20], a family of degree 8 poly-
nomials with constant term ±1 satisfying (P1) and (P2) is exhibited.

Skolem meets Schanuel

In this section, we demonstrate Theorem 5.2. The proof of this theorem gives
an algorithm for the computation of the set of zeroes of a simple LRS - the
Schanuel Conjecture and Skolem Conjecture are required for the termination of
this algorithm.
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p-adic Power series representation of a LRBS

Let u be a Q-LRS with recurrence coefficients a0, . . . , ak−1. We can extend
the matrix representation un = αAnβ (for α, β as in (4)) to an LRBS by taking
inverse powers of A so that un = αAnβ for all n ∈ Z. We can use this representa-
tion to express un as f(n) where f is a p-adic power series i.e f(X) =

∑∞
j=0 bjX

j

with coefficients in Zp. To define f , we work with a prime p such that

1. p doesn’t divide the ak−1.

2. p doesn’t divide the discriminant ∆

(
g

gcd(g, g′)

)
3. The characteristic polynomial g splits over Zp.

There are infinitely many primes satisfying this condition as in Section 2.2 of
[3]. We know by Remark 3.4 that, upon scaling u into a Z-LRS, there is an
integer L for which λL

i ≡ 1 mod p for a characteristic root λi. Therefore the p

adic logarithm logp λ
L
i is defined. Write un =

∑l
i=1 Qi(n)λ

n
i , the exponential-

polynomial representation. Then we have

uLn =

l∑
i=1

Qi(Ln)λ
Ln
i =

l∑
i=1

Qi(Ln) expp(n logp(λ
L
i ))

This motivates the definition

f(x) =

l∑
i=1

Qi(Lx) expp(x logp λi
L) (23)

for all x ∈ Zp.

Then we have uLn = f(n) and we can compute Taylor series coefficients bj of
f , giving us

bj =
1

j!

l∑
i=1

j∑
k=0

(
j

k

)
LkQ

(k)
i (0)(logp λ

L
i )

j−k (24)

An alternative formula for bj can be found which makes computation of vp(bj)
much simpler. As AL ≡ I mod p, set AL = I + pB for an integer matrix B.
Then as ALn = (I + pB)n, by binomial expansion we have:

uLn = α(I + pB)nβ =

n∑
k=0

(
n

k

)
pkαBkβ =

∞∑
k=0

n(n− 1) . . . (n− k + 1)

k!
pkαBkβ

=

∞∑
k=0

∞∑
j=0

ck,jn
j p

k

k!
=

∞∑
j=0

∞∑
k=j

ck,jn
j p

k

k!
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for some ck,j ∈ Z where ck,j = 0 for j > k. The swapping of the series in the last
step and the convergence of these series in Zp are justified by Proposition 4.1.4

in [14]. If the summand ck,jn
j pk

k! → 0 as j → ∞ and converge to 0 uniformly

in j as k → ∞. This follows from vp(k!) <
k

p−1 (from Legendre’s formula) so

vp(ck,jn
j pk

k! ) ≥
(p−2)k
p−1 for all k ≥ j.

Consider the power series h(X) =
∑∞

j=0 djX
j where

dj =

∞∑
k=j

ck,j
pk

k!
∈ Zp. (25)

We now aim to use Proposition 4.4.3 of [14] - we can equate coefficients if we
know that the two power series agree on Z. By the previous discussion, we have

vp(dj) ≥ (p−2)j
p−1 so h converges on Zp and has h(n) = uLn = f(n) so h and f

agree on Z so we have bj = dj for all j ∈ N. Using (25), we can calculate vp(bj)
for any j such that bj ̸= 0.

An algorithm for the zeroes of an LRBS

In this section we show that conditional on the weak p-adic Schanuel Conjecture
that the set of all zeroes of a non degenerate LRBS is computable using an oracle
for the Bi-Skolem Problem. This gives a Turing reduction of the Skolem Problem
to the Bi-Skolem Problem. We then show that this reduction is unconditional
for order 5 LRS.

Proposition 5.10. Let f : Zp → Zp be given by a convergent p-adic power
series f(X) =

∑∞
k=0 bkX

k with coefficients in Zp. Choose a positive integer
t such that b0 = · · · = bt−1 = 0 and bt ̸= 0. With ν = vp(bt), we have
f(pν+1x) ̸= 0 for all non zero x ∈ Zp.

Proof. Let x ∈ Zp be non zero. For m > t, we have

vp(bt(p
ν+1x)t) = ν + t(ν + 1) + vp(x

t) < m(ν + 1) + vp(x
m) ≤ vp(bm(pν+1x)m)

So for any m ≥ t, we have that

vp

(
m∑

k=0

bk(p
ν+1x)k

)
= vp(bl(p

ν+1x)t)

Taking m → ∞, we have vp(f(p
ν+1x)) = vp(bl(p

ν+1x)t) < ∞ so f(pν+1x) ̸= 0
as required.

For an LRBS u, the following proposition gives us an algorithm to find a positive
integer M such that uMn ̸= 0 for all n ∈ Z\{0}.

Theorem 5.11. Let u = {un}∞n=−∞ be a non zero Q-LRBS. Assuming the
weak p-adic Schanuel Conjecture, we can compute a positive integer M such
that uMn ̸= 0 for all n ∈ Z\{0}.
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Proof. As in the previous section, let p be a prime and L be a positive integer
such that uLn = f(n) for n ∈ Z where f(X) =

∑∞
j=0 bjX

j is a p-adic power
series with coefficients in Zp. Recall the expression (23) for f where Qi are from
the exponential-polynomial representation and λi for 1 ≤ i ≤ l are characteris-
tic roots.

Pick a maximal multiplicatively independent subset of characteristic roots, label
them without loss of generality by {λ1, . . . , λt} for some t ≤ l. Let K be the
subfield of Qp generated by λ1, . . . , λl. With Theorem 5.8, we can compute
integers mi and ni,j , where mi ̸= 0, such that for all i ∈ {1, . . . , l} and j ∈
{1, . . . , t}, we have λmi

i = λ
ni,1

1 . . . λ
ni,t

t . Then we have

logp λi
L =

ni,1

mi
logp λi

L + · · ·+ ni,t

mi
logp λt

L

This means for each i ∈ {1, . . . , l}, we have logp λi
L = Li(logp λ1

L, . . . , log λt
L)

where Li is a computable linear form in t variables with rational coefficients.

For j ∈ N, define Fj ∈ K[X1, . . . , Xt] by

Fj(X1, . . . , Xt) =
1

j!

l∑
i=1

j∑
d=0

(
j

d

)
LdQ

(d)
i (0)li(X1, . . . , Xt)

j−d

By (24), we have

bj = Fj(logp λ1
L, . . . , logp λt

L) (26)

If Fj isn’t identically zero, the coefficients of Fj are algebraic over Q and the set
{logp λ1, . . . , logp λt} is linearly independent over Q, so we can apply the weak
p-adic Schanuel conjecture to conclude that bj ̸= 0.

This gives us a procedure to calculate M :

1. Compute the polynomials F0, F1, . . .

2. Let j0 be the least index j such that Fj isn’t identically zero. This exists
as if all bj are zero, u is the zero sequence so we know j0 ≤ k−1. Compute
ν = vp(bj0). We know that this will terminate conditional on the p-adic
Schanuel conjecture as it implies bj0 ̸= 0.

3. By proposition 7, for M = Lpν+1 we have that uMn ̸= 0 for all non zero
integers n.

This completes the proof.

The weak p-adic Schanuel conjecture is only required to guarantee the termina-
tion of the calculation of vp(bj0). Next we prove Theorem 5.2.
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Proof of Theorem 5.2. We use a recursive procedure. As we are looking for
zeroes, by Remark 2.2 we can assume without loss of generality that our LRS
{un}∞n=0 is non degenerate and we can extend it to an LRBS u = {un}∞n=−∞.
Using the oracle for the Bi-Skolem problem, we either find n0 ∈ Z such that
un0

= 0 - if there is no such n0, the procedure terminates and we are done.
Reindexing so that n0 = 0, we can then apply proposition 7 to find M such
that uMn ̸= 0 for non zero integers n. Then we can split the sequence un into
uMn+j for j ∈ {0, . . . ,M−1} and repeat the procedure on these sequences. This
must terminate eventually because the Skolem-Mahler-Lech Theorem for non
degenerate sequences states there are only finitely many zeroes, as in Theorem
2.1 of [12].

This is our algorithm, requiring both the p-adic Schanuel conjecture and the
Skolem Conjecture to terminate. Restricting to LRS of up to order 5, we can
remove the p-adic Schanuel dependence, Theorem 5.3.

Proof of Theorem 5.3. We only need to focus on Q-LRS u not belonging to the
MSTV class. By Remark 4.11, we know that un =

∑5
i=1 αiλ

n
i where α1 ̸= −α3

(as they aren’t of equal modulus), λ5 ∈ R and

λ1λ2 = λ3λ4 (27)

- the four dominant roots. Let K be the number field generated by the λi, let
d = [K : Q] and OK be the ring of integers of K. We can rescale u so that
no rational prime divides all of the characteristic roots and that λi ∈ OK . As
we saw in the proof of Theorem 5.1 for the order 5 case, the set {λ1, . . . , λ4} is
invariant under any automorphism σ ∈ Gal(K/Q).

Therefore any Galois conjugate of λ1

λ2
has modulus 1 so we know that by Theo-

rem 2.8 that there is a prime ideal p of OK such that vp(λ1) ̸= vp(λ2). Without
loss of generality, suppose that p divides λ1. If we can show that vp(λi) = 0
for some i ∈ {2, 3, 4, 5} then since u doesn’t belong to the MSTV class, there
are at least three dominant roots with respect to vp. By (27) we then get that
vp(λ1) = vp(λ3) > 0 and vp(λ2) = vp(λ4) = vp(λ5) = 0.

Suppose for contradiction that p divides every characteristic root. Let p lie
above the rational prime p and let its ramification index be e. Gal(K/Q) acts
transitively on the prime ideals lying above p so every prime ideal above p di-
vides every characteristic root to order at least d. We know d ≥ e as e | d.
Therefore, there is a rational prime dividing every characteristic root, a contra-
diction. In summary, we have a prime ideal p in OK that divides λ1 and λ3 but
not λ2, λ3, λ5.

Now to the proof of the theorem. We need to avoid the use of the weak p-adic
Schanuel conjecture - proving that the procedure terminates unconditionally is
sufficient. For this, it is enough to show that for such Q-LRBS u, we can com-
pute M such that uMn ̸= 0 for all non zero integers n. Our aim will be to find
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a multiplicative relation among the λi which involves λ3 but not λ1 - this will
contradict the fact that there is an ideal p ◁ OK which divides λ1 and λ3 but
not λ2, λ3, λ5.

Choose a prime p such that there is an embedding K ↪→ Qp. Let f(X) =∑∞
j=0 bjX

j be a p-adic power series such that there is a positive integer L for

which uLn = f(n). From (24), in this case we have b1 =
∑5

i=1 αi logp λi
L. We

will prove that b1 ̸= 0. Suppose for contradiction that b1 = 0. By (27), we have

logp λ1
L + logp λ2

L − logp λ3
L − logp λ4

L = 0

where L is an integer such that λL
i ≡ 1 mod p. Cancelling logp λ1

L, we have

(α2 − α1) logp λ2
L + (α3 + α1) logp λ3

L + (α4 + α1) logp λ4
L + α5 logp λ5

L = 0

(28)

Since α1 ̸= −α3, the logp λ
L
3 term is non zero. By applying Theorem 5.7, we

obtain an equation
∑5

i=2 βi log λi
L ̸= 0 such that βi are integers and β3 ̸= 0 -

this gives us the contradictory multiplicative relation.

Some examples of the algorithm established in the proof of Theorem 5.2 are
given in Section 5 of [3].

6 Universal Skolem sets

A new approach to the Skolem problem was initiated in 2021 in [21]. Instead of
placing restrictions on the LRS such as its order, we can place restrictions on the
domain where we search for zeroes. This leads to the definition of a universal
Skolem set, a set where the Skolem problem is decidable. In this essay, we will
define the example of a universal Skolem set as in [23, 22] but will not prove this
property. Instead, we will focus on showing it has positive density at least 0.29
unconditionally and density 1 conditional on the Bateman Horn conjecture, a
very general conjecture regarding the distribution of primes.

Definition 6.1 (Universal Skolem Set). An infinite set S ⊆ N is a universal
Skolem Set if given any Z-LRS u, there is an effective procedure that outputs
whether or not there is n ∈ S such that un = 0.

We begin by defining S, the example of a universal Skolem set. For a real num-
ber x > 1 and positive integer m, we inductively define the repeated logarithm
function logm x by log1 x = log x and if m ≥ 2, logm x = max(1, logm−1(log x)).

Fix a large positive integer X. We define the two disjoint intervals A(X) and
B(X) by

A(X) =
[
log2 X,

√
logX

]
and B(X) =

[
logX√
log3 X

,
2 logX√
log3 X

]
(29)
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Define the representation of an integer n ∈ [X, 2X] by a triple (q, P, a) where
q ∈ A(X), a ∈ B(X), P and q are prime and n = Pq + a. Say that two
representations n = Pq + a and n = P ′q′ + a′ are correlated if

q ̸= q′, a ̸= a′ and |(a+ ηq)− (a′ + ηq′)| <
√
logX

for some η ∈ {±1}. Denote the number of representations of n by r(n). Then
we define the set

S(X) = {n ∈ [X, 2X] : r(n) > log4(X) and no two representations are correlated}

and define

S =
⋃

k≥10

S(2k) (30)

We cite the following theorem which demonstrates that S is a universal Skolem
set - it shows that any zero belonging to S is bounded by some computable
upper bound:

Theorem 6.2. Let u = {un}∞n=0 be a non degenerate Z-LRS of order k ≥ 2
with recurrence coefficients a0, . . . , ak−1 with initial terms u0, . . . , uk−1 not all
zero. If n ∈ Ann(u) ∩ S then

n < max(exp3(A
2), exp5(10

10k6)), where A = max(10, |ui|, |ai| : 0 ≤ i ≤ k − 1)

The proof of this theorem is in Section 3 of [23]. We will focus on the density
of S, namely proving the following theorem:

Theorem 6.3 (Density of S). The density of S is unconditionally at least 0.29
and it is 1 subject to the Bateman-Horn conjecture.

We begin with a discussion of the Bateman Horn Conjecture.

The Bateman Horn Conjecture

The Bateman Horn Conjecture [35] is a conjecture in number theory concerning
the frequency of prime numbers among a system of polynomials.

Conjecture 6.4 (Bateman-Horn Conjecture). Let f1, . . . , fk be polynomials
in one variable with integer coefficients, positive leading coefficient and degrees
h1, . . . , hk. Assume that each of these polynomials are irreducible over Q and
no two of them differ by a constant factor. Let Q(f1, . . . , fk;N) = #{1 ≤ n ≤
N : f1(n), . . . , fk(n) are all primes} where n is an integer. Then

Q(f1, . . . , fk;N) ∼ C(f1, . . . , fk)

h1h2 · · ·hk

∫ N

2

(log u)−k du,

where C(f1, . . . , fk) =
∏
p

(
1− 1

p

)−k (
1− ω(p)

p

)
.
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where the product is taken over all primes p and ω(p) is the number of solutions
to the congruence f1(x)f2(x) . . . fk(x) ≡ 0 mod p for 0 ≤ x < p− 1. If ω(p) = p
then the product is 0 - this happens if p divides the product f1(m) . . . fn(m) for
each 0 ≤ m < p− 1. In this case, there can only be finitely many m for which
all the fi are simultaenously prime because if p divides their product, fi(m) = p
for some i which can only happen finitely many times - at most hi times. So
in this case Q is finite - this case isn’t of interest. A proof of the convergence
of C(f1, . . . , fk) and a heuristic argument for this conjecture can be found in [35].

We will use the result for linear functions f1(t) = a1t + b1, f2(t) = a2t + b2
where a1, a2 > 0 and a1, a2, b1, b2 are integers. Then we have an upper bound
on Q(f1, f2;N):

Q(f1, f2;N) ≤ SC(f1, f2)

∫ N

2

(log u)−kdu (31)

where S is some positive real number. [35] gives S = 8 while the current
best result found via the large sieve is S = 3.418, shown by Wu [38]. This
upper bound will give us unconditional positive density results. From this, with
∆ = |a1a2(a1b2 − b1a2)| ≠ 0, we deduce

Q(f1, f2;N) ≪ ∆

φ(∆)

N

(logN)2
(32)

where f ≪ g is the Vinogradov notation, meaning f = O(g(X)).

Finding the density of S

Now we focus on proving Theorem 6.3. Fix a large positive integer X.

In the definition of S we removed n ∈ N which had two correlated representa-
tions. Therefore we will follow these steps to prove Theorem 6.3:

1. Prove that the set of n in [X, 2X] which have two correlated representa-
tions has density zero.

2. Show that {n ∈ [X, 2X] : r(n) > log4 X} has density one subject to the
Bateman Horn conjecture, and density at least 0.29 unconditionally.

We follow the proof as in [23]. Originally, I followed the exposition in the August
2023 version of this paper, alongside the unconditional positive density result
in [22]. In [35], I found that bounds of the form (31) existed which streamlined
the positive density proof and gave a lower bound, but this was also found in
the February 2024 edition of [23]. In this section, in sums and products, the
indices p, q, P, P ′ run over positive primes. First, we need the following result:

Proposition 6.5.
∑

q∈A(X)
1
q ∼ log3 X
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Proof. Mertens’ first theorem [27] states
∑

p≤X
1
p = log2 X + M + O( 1

logX ).
Therefore∑

q∈A(X)

1

q
=

∑
q≤

√
logX

1

q
−

∑
q≤log2 X

1

q
= log2

√
logX − log4 X + o(1) ∼ log3 X

as required.

The following proposition is step 1 of our proof:

Proposition 6.6. The set of n ∈ [X, 2X] which has two correlated representa-
tions has cardinality O( X

(logX)1/3
). In particular, it has density 0.

Proof. Let n = qP + a = q′P ′ + a′ be as in the definition of the representation
of an integer - q, q′ ∈ A(X) and a, a′ ∈ B(X). Suppose that q ̸= q′ and a ̸= a′.

Since |(a + ηq) − (a′ − ηq)| <
√

logX (where η = ±1) and q, q′ ≤
√
logX, we

have |a − a′| < 2
√
logX. We will count the number of pairs of primes P, P ′

such that

qP + a = q′P ′ + a′ ∈ [X, 2X] (33)

Counting solutions to the system, as it’s linear and gcd(q, q′) = 1, we can write
the solutions (P, P ′) to this equation as P = P0 + q′t, P ′ = P ′

0 + qt for some
integer t ≥ 0 and some minimal solution P0, P

′
0. This puts it in the form to use

(32) as ∆ = |qq′(qP0 − q′P ′
0)| = |qq′(a− a′)| ≠ 0. Since qP + a ≤ 2X, we have

P ≤ 2X
q so that t ≤ 2X

qq′ . Therefore by (32), we have that the number of t such

that both P0 + q′t and P ′
0 + qt are prime is

≪ X

qq′(logX)2

(
|qq′(a− a′)|

φ(|qq′(a− a′)|)

)
≪ X log3 X

qq′(logX)2
(34)

where in the second line we use the inequality m
φ(m) ≪ log2 m, (Theorem 328

of [17]) as |qq′(a− a′)| ≤ 2(logX)
3
2 as q, q′ ≤

√
logX and |a− a′| ≤ 2

√
logX.

Next, we sum over the number of solutions of (33) over the different choices of

q ̸= q′ ∈ A(X) and a ̸= a′ ∈ B(X) such that |(a + ηq) − (a′ − ηq)| <
√
logX.

Recall that there are at most 2
√
logX choices of a′. a ∈ B(X) so there are at

most logX√
log3 X

ways of choosing a. This gives us a count of

X log3 X

(logX)2

 ∑
q≤

√
logX

1

q

2(
logX√
log3 X

)√
logX ≪ X(log3 X)2.5√

logX

where constants are omitted because we’re using Vinogradov notation. The first
two terms come from summing over (34), with the sum being squared as q, q′

are independent. The third and fourth terms are from the number of choices of
a and a′. This gives the number of n coming from a tuple (q, q′, a, a′, P, P ′) as

O

(
X

(logX)
1
3

)
. This completes the proof.

35



Next we prove step 2 in the plan. We use the same notation as before. We aim
to count the number of representations r(n) for n ∈ [X, 2X] - if we can show

that r(n) = (C + o(1))
√

log3 X for (1 + o(1))X integers n in [X, 2X] then we
have that |S(X)| = (1 + o(1))X and so that S has density 1. We do this by
considering zeroth to second moments of r(n), let

Mi(X) =
∑

n∈[X,2X]
r(n)>log4 X

r(n)i

for i = 0, 1, 2. Our aim is to show that M0(X) = (1 + o(1))X. By the Cauchy
Schwarz inequality, we know that M0(X)M2(X) ≥ M1(X)2.

For the first moment,∑
n∈[X,2X]

r(n)>log4 X

r(n) =
∑

q∈A(X)
a∈B(X)

∑
X−a
q ≤p≤ 2X−a

q

1 = (1 + o(1))
∑

q∈A(X)
a∈B(X)

X

q logX

= (1 + o(1))X
√
log3 X

by the prime number theorem and Theorem 6.5. If we can show that∑
n∈[X,2X]

r(n)>log4 X

r(n)2 = (1 + o(1))X log3 X (35)

then we would have M0(X) = (1 + o(1))X as M0(X)M2(X) ≥ M1(X)2.

To prove this, we can use estimates on the number of pairs of primes P, P ′

such that (33) holds. For this we can apply the Bateman Horn conjecture as
long as a ̸= a′ ∈ B(X), q ̸= q′ ∈ A(X), gcd(a − a′, qq′) = 1 and 2 | (a − a′).
However from the previous discussion, if this isn’t true we know that we fall
into a degenerate case - indeed, if they don’t hold then (33) has no solutions.
We can also apply (31). This gives us that the number of solutions to (33) is

T = (C ′ + o(1))
X

qq′(logX)2
g(|a− a′|) (36)

conditional on the Bateman Horn conjecture, where

C ′ = 2
∏
p>2

p(p− 2)

(p− 1)2
≈ 1.32 and g(m) =

∏
p|m
p>2

p− 1

p− 2
.

C ′ is known as the twin prime constant and g is a multiplicative function.
Unconditionally we have that the number of solutions is upper bounded by
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3.418T by (31). Now we can calculate the second moment;∑
n∈[X,2X]

r(n)2 =
∑

a,a′∈B(X)
q,q′∈A(X)

∑
P,P ′

1{qP+a=q′P ′+a′∈[X,2X]} (counting independent pairs)

=
∑

a̸=a′∈B(X)
q ̸=q′∈A(X)

2|a−a′

gcd(a−a′,qq′)=1

(C ′ + o(1))
X

qq′(logX)2
g(|a− a′|) +O(X

√
log3 X)

= (C ′ + o(1))
X(log3 X)2

(logX)2

∑
a ̸=a′∈B(X)
2|(a−a′)

g(|a− a′|) +O(X
√
log3 X)

by applying Proposition 6.5 twice. Here, the O(X
√
log3 X) term comes from

the q = q′, a = a′ case. To simplify the sum with g, we make use of the following
theorem, from [38] Section 1.3, Theorem 11.

Theorem 6.7. Let f be a multiplicative function with values in [0, 1]. Write

Mf =
∏

p prime

(1− p−1)

∞∑
v=0

f(pv)p−v,

where the infinite product is taken to be zero if it diverges. Then for Y tending
to infinity, we have ∑

n≤Y

f(n) = Y (Mf + o(1)).

Since g is a multiplicative function, we have for Y tending to infinity,∑
n≤Y
2|n

g(n) =
∑
n≤Y

2

g(n) =
Y + o(Y )

2

∏
p>2

(
1 +

g(p)− 1

p

)
=

Y + o(Y )

2

∏
p≥2

(
1 +

1

p(p− 2)

)

where the first equality comes from g(2n) = g(n) for all n, the second follows by
Theorem 6.7 and the final equality comes from g(p) = p−1

p−2 . The final product

on the right hand side converges to a finite value. Finally, since B(X) has length
logX√
log3(X)

, we deduce

∑
a ̸=a′∈B(X)
2|(a−a′)

g(|a− a′|) = 1 + o(1)

2

(
logX√
log3 X

)2 ∏
p>2

(
1 +

1

p(p− 2)

)

=
1 + o(1)

C ′

(
logX√
log3 X

)2

.
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So overall we get ∑
n∈[X,2X]

r(n)2 = (1 + o(1))X log3 X (37)

as required. If instead we had used the unconditional version of Bateman Horn,
in the calculation of M2(X) we would get M2(X) ≤ 3.418(1 + o(1))X log3(X)
so through the Cauchy Schwarz argument, we will get a lower bound M0(X) ≥
(0.29 + o(1))X. This gives us our density results on S.

7 Conclusion

The key steps of this essay are the following:

1. We have proven the Skolem-Mahler-Lech theorem for LRS over a field of
characteristic zero, following a proof by [16]. This proof was modified
from its original form concerning power series of rational functions to
LRS, simplifying the proofs. It was shown that the determination of the
period of the arithmetic progression is effective for LRS over a field of
characteristic zero. As it is possible to decide whether Ann(u) is finite,
we found that the Skolem Problem is equivalent to deciding whether the
finite set in Ann(u) is empty or not.

2. By combining the approaches in [18, 29], the Skolem Problem was shown to
be decidable for LRS belonging to the MSTV class - notably, this includes
all Q ∩ R-LRS of order up to 4. Through the notion of reversibility, a
definition inspired by LRBS, we showed that reversible Z-LRS of order up
to 7 belong to the MSTV class. These methods could not be extended to
order 8 though.

3. With dependence on the p-adic Schanuel conjecture, an important conjec-
ture in transcendental number theory, it was shown that there is a Turing
reduction from the Skolem Problem for Q-LRS to the Bi-Skolem problem.
By also assuming the Skolem Conjecture, it was shown that the Skolem
Problem is decidable for simple LRS. The proof of this theorem produced
an algorithm - the conjectural dependence is only required for the ter-
mination of the algorithm. Furthermore, the dependence on the p-adic
Schanuel Conjecture can be removed in the case of simple LRS of order
up to 5 so that only the Skolem Conjecture is required.

4. Instead of placing restrictions on the LRS to solve the decidability prob-
lem, instead restrictions can be placed on the set. This leads to the notion
of a universal Skolem set, a set where the Skolem Problem is decidable for
Z-LRS. We cited the existence of a universal Skolem set and proved it is of
positive density at least 0.29 and of density 1 assuming the Bateman-Horn
conjecture, a vast generalisation of many famous theorems and conjectures
in analytic number theory such as the prime number theorem and the twin
prime conjecture.
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and James Worrell. Skolem meets schanuel, 2022.

[4] V. Blondel and J. Tsitsiklis. A survey of computational complexity results
in systems and control. Automatica, 36(9), pages 1249–1274, 2000.

[5] Enrico Bombieri and Walter Gubler. Heights in Diophantine Geometry.
New Mathematical Monographs. Cambridge University Press, 2006.

[6] Florian Luca Boris Bartolome, Yuri Bilu. On the exponential local-global
principle. Acta Arithmetica, 159(2):101–111, 2013. URL http://eudml.

org/doc/286065.
[7] Lech C. A note on recurring series. Ark. Mat., 2, 1953.
[8] Frank Calegari and Barry Mazur. Nearly ordinary galois deformations over

arbitrary number fields, 2008.
[9] K. Chatterjee and L. Doyen. Stochastic processes with expected stopping

time. In 36th Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, LICS, pages 1–13, 2021.

[10] K. Conrad. Ostrowski for number fields.
[11] Harm Derksen. A skolem-mahler-lech theorem in positive characteristic

and finite automata, 2005.
[12] G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward. Recurrence

Sequences. American Mathematical Society, 2003.
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lech. Theoretical Computer Science, 43:91–98, 1986. ISSN 0304-3975.
doi: https://doi.org/10.1016/0304-3975(86)90168-4. URL https://www.

sciencedirect.com/science/article/pii/0304397586901684.
[17] G.H. Hardy and Wright E. M. An introduction to the theory of numbers.

Clarendon Press, 1954.
[18] Vereshchagin N. K. The problem of appearance of a zero in a linear re-

currence sequence. Mathematical notes of the Academy of Sciences of the
USSR Volume 38, pages 609–615, 1985.

[19] L. Kronecker. Zwei satse ¨ uber ¨ gleichungen mit ganzzahligen coefficien-

39

http://eudml.org/doc/205210
http://eudml.org/doc/286065
http://eudml.org/doc/286065
https://www.sciencedirect.com/science/article/pii/0304397586901684
https://www.sciencedirect.com/science/article/pii/0304397586901684


ten. , J. Reine Angew. Math. 53, pages 173–175, 1857.
[20] Richard Lipton, Florian Luca, Joris Nieuwveld, Joël Ouaknine, David
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James Worrell. Skolem meets bateman-horn, 2024.

[24] K. Mahler. Eine arithmetische Eigenschaft der Taylor-koeffizienten ratio-
naler Funktionen. Noord-Hollandsche Uitgevers Mij, 1935. URL https:

//books.google.co.uk/books?id=BUxy0AEACAAJ.
[25] David Masser. Auxiliary Polynomials in Number Theory. Cambridge Tracts

in Mathematics. Cambridge University Press, 2016.
[26] David William Masser. New advances in transcendence theory: Linear

relations on algebraic groups. 1988. URL https://api.semanticscholar.

org/CorpusID:115368865.
[27] F. Mertens. Ein beitrag zur analytischen zahlentheorie. J. reine angew.

Math. 78, 1874.
[28] M. Mignotte. A note on linear recursive sequences. J. Australian Math.

Soc. 20 (Series A), pages 242–244, 1975.
[29] M. Mignotte, T. Shorey, and R. Tijdeman. The distance between terms of

an algebraic recurrence sequence. J. f¨ur die reine und angewandte Math.,
349, 1984.

[30] J. Ouaknine and J. Worrell. On linear recurrence sequences and loop ter-
mination. ACM SIGLOG News, 2(2), pages 4–13, 2015.

[31] G. Rozenburg and A. Salomaa. Cornerstones of Undecidability. Prentice
Hall, 1994.

[32] A. Schinzel. Abelian binomials, power residues and exponential congru-
ences. Acta Arith. 32, 3, pages 245–274, 1977.

[33] A. Schinzel. On the congruence un ≡ c mod p where un is a recurring
sequence of the second order. Acta Acad. Paedagog. Agriensis Sect. Math.
30, pages 147–165, 2003.

[34] T. Shorey. Linear forms in members of a binary recursive sequence. Acta
Arithmetica, 43(4):317–331, 1984. URL http://eudml.org/doc/205912.

[35] Bateman P. T and Horn R. A. A heuristic asymptotic formula concerning
the distribution of prime numbers. Mathematics of Computation, 16(79):
363–367, 1962. ISSN 00255718, 10886842. URL http://www.jstor.org/

stable/2004056.
[36] Skolem T. Ein verfahren zur behandlung gewisser exponentialer gleichun-

gen. Comptes rendus du congr‘es des math´ematiciens scandinaves, 1933.

40

https://doi.org/10.1145/3531130.3533328
https://books.google.co.uk/books?id=BUxy0AEACAAJ
https://books.google.co.uk/books?id=BUxy0AEACAAJ
https://api.semanticscholar.org/CorpusID:115368865
https://api.semanticscholar.org/CorpusID:115368865
http://eudml.org/doc/205912
http://www.jstor.org/stable/2004056
http://www.jstor.org/stable/2004056


[37] T. Tao. Structure and randomness: pages from year one of a mathematical
blog, 2008.

[38] G. Tenenbaum. Introduction to Analytic and Probabilistic Number Theory:
Third Edition. American Mathematical Society, 2015.

[39] A. J. van der Poorten. Linear forms in logarithms in the p-adic case.
Transcendence Theory: Advances and Applications, pages 29–57, 1977.

41


	Introduction
	Preliminaries
	The Skolem-Mahler-Lech Theorem
	Special Cases
	The Bi-Skolem Problem
	Universal Skolem sets
	Conclusion

