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1 Introduction

The Gamma Function is a special function which is the result of generalising the
factorial to complex arguments. It’s known as the ’least special of the special
functions’ because it commonly appears throughout mathematics but still isn’t
really something which undergraduate courses do much on (only in FCM and
Asymptotic Methods here) which is a shame because it has really interesting
properties and links together a lot of mathematics. Hopefully this talk will show
that to you and contribute to making it less of a ’special function’ !

2 The forms of the Gamma Function

We begin with the limit

lim
n→∞

n!(n+ 1)m

(n+m)!
= 1

for a fixed integer m. To justify it, expanding it out,

lim
n→∞

n!(n+ 1)m

(n+m)!
= lim

n→∞

(n+ 1)m

(n+ 1) . . . (n+m)

= lim
n→∞

1(
n+1
n+1

)(
n+2
n+1

)
. . .
(

n+m
n+1

)
=

(
m∏

k=1

lim
n→∞

n+ k

n+ 1

)−1

= 1

because each of the limits in the product is 1 as m is a fixed integer.

To get an equation for m! we can multiply by m!:

lim
n→∞

n!m!(n+ 1)m

(n+m)!
= m!
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Manipulating it a bit,

m! = lim
n→∞

m!(n+ 1)z

(n+m)!

= lim
n→∞

n!(n+ 1)z

(m+ 1) . . . (m+ n)

This definition we can take to be our factorial for complex numbers - to empha-

sise this, replace m with z ∈ C. Noting that both lim
n→∞

(n+1)z

nz = 1 and that for

historical reasons we shift down the argument, define the Gamma Function to
be

Γ(z) = lim
n→∞

n!nz

z(z + 1) . . . (z + n)

This is known as the Gauss Limit form of the Gamma Function.

From here we can derive other forms of the Gamma function. Replacing the nz

with (n+ 1)z, noting that

(n+ 1)z =
2z

1z
· 3

z

2z
. . .

(n+ 1)z

nz
=

n∏
k=1

(
1 +

1

n

)z

and dividing the top and bottom by n! we get

Γ(z) =
1

z

∏n
k=1(1 +

1
n )

z

( z+1
1 )( z+2

2 ) . . . ( z+n
n )

=
1

z

n∏
k=1

(1 + 1
k )

z

1 + z
k

This is known as Euler’s product form of the Gamma Function (we haven’t
proved yet that this is the same as the integral - it could be a different function
with very similar properties - but let’s assume that for now)

From the Gauss Limit we can derive another form of the Gamma Function.
Start by writing zn = ez logn and divide by n!

Γ(z) =
1

z
lim
n→∞

ez logn

( z+1
1 )( z+2

2 ) . . . ( z+n
n )

=
1

z
lim
n→∞

ez logn

n

n∏
k=1

(
1 +

z

k

)−1

= lim
n→∞

ez logn−
∑n

k=1
1
k

z

n∏
k=1

(
1 +

z

k

)−1

e
z
k

=
e−γz

z

∞∏
k=1

(
1 +

z

k

)−1

e
z
k
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This is the Weierstrass product representation of the Gamma function. The
product representations are quite useful for expressions for log Γ(z) which can
sometimes be easier to deal with than the Gamma function itself.

Now for a useful characterisation of the Gamma Function:

Theorem (Bohr-Mollerup):

If f satisfies the following properties for all complex x

1. f(1) = 1
2. f(x+ 1) = xf(x)
3. f is log convex

Then f(x) = Γ(x)

Proof: Since we have log convexity, it’s reasonable to consider g = log f . By
the convexity of g, we have

log n ≤ g(x+ n+ 1)− g(n+ 1)

x
≤ log(n+ 1) (1)

for some integer n. An integer n was chosen because now we can use the
functional equation given by point 2 repeatedly:

g(x+ 1) = log x+ g(x) =⇒ g(n+ 1 + x) = g(x) + log(x(x+ 1) . . . (x+ n))

Putting this into (1) we get

0 ≤ g(x)− log

(
n!nx

x(x+ 1) . . . (x+ n)

)
≤ x log

(
1 +

1

n

)
As n→ ∞ (take n to be increasingly large integers as it’s true for all integers),
g is determined uniquely and we get the result

f(x) = lim
n→∞

n!nx

x(x+ 1) . . . (x+ n)

An integral you might remember from STEP is

f(n) =

∫ ∞

0

xn−1e−xdx

Both f(1) = 1 and f(n + 1) = nf(n) can be verified fairly easily making it a
candidate Gamma Function, the only thing left to prove is log convexity.

This can be done using Hölder’s inequality, which states∣∣∣∣∫ fgdx

∣∣∣∣ ≤ (∫ |f |pdx
) 1

p
(∫

|f |qdx
) 1

q
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where
1

p
+

1

q
= 1. Using this on f ,

f(ax+ (1− a)y) =

∫ ∞

0

tax+(1−a)ye−tdt

=

∫ ∞

0

tax+(1−a)ye−tae−t(1−a)dt

=

(∫ ∞

0

(e−tatax)
1
a

)a(∫ ∞

0

(e−t(1−a)t(1−a)y)
1

1−a

)(

1− a)

= f(x)af(x)1−a

Taking the log of this,

log f(ax+ (1− a)y ≤ a log f(x) + (1− a) log f(y)

which shows f is log convex so it’s the Gamma function! This is the usual form
you encounter the Gamma function in.

It makes sense that all the different forms of Γ ended up being the same - they all
must be logarithmically convex. The first two are a strict requirement to be the
same as the factorial function on the integers so only the third property really
matters. Other functions satisfying the first two properties can be constructed
such as h(x) = ek sin(2mπx)Γ(x) for some integerm but these won’t satisfy the log
convexity. There are other theorems which characterise the Gamma Function
as a unique function satisfying a property or the ’simplest’ function satisfying
certain properties, making it a natural choice 1. It also has a lot of interesting
properties which justifies studying it above other extensions too!

3 Stirling’s Formula

The integral form of Γ can be used to give us Stirling’s Formula with Laplace’s
Method. To set up the use of this, beginning with the integral,

M ! =

∫ ∞

0

e−xxMdx(x = Nz)

=

∫ ∞

0

e−Mz(Mz)MMdz

=MM+1

∫ ∞

0

e−MzzMdz

=MM+1

∫ ∞

0

eM(ln z−z)dz

If M is large then the main contribution will be around the maximum of this
integrand - other values have much smaller contributions. The maximum occurs

1https://mathoverflow.net/questions/23229/importance-of-log-convexity-of-the-gamma-
function
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at the maximum of f(z) = ln z − z which is at z0 = 1, when the function takes
the value f(1) = −1. Expanding in a Taylor series about this point,

f(z) = f(z0) + f ′(z0)(z − z0) +
f ′′(z0)

2
(z − z0)

2 + . . .

= f(z0) +
f ′′(z0)

2
(z − z0)

2 + . . .

f ′′(z) = − 1

z2
so f ′′(1) = −1. Higher order terms in the Taylor series will

contribute little because of M being large so we can approximate,

M ! ≈MM+1

∫ ∞

0

e−M−M
(z−1)2

2 dz

=MM+1e−M
√
2πM =

√
2πM

(
M

e

)
This approximation is really accurate - 99% accuracy when n=10. It also shows
us that the integral form of factorials is useful to deduce properties of factorials.

4 Beta Function

The main use of the Gamma Function when calculating integrals is through the
Beta Function.

B(a, b) =

∫ 1

0

xa−1(1− x)b−1dx

where it’s shifted down just like the Gamma Function. A useful expression for
the Beta Function can be derived by multiplying two Gamma function integrals
together:

Γ(x)Γ(y) =

(∫ ∞

0

e−ttx−1dt

)(∫ ∞

0

e−ssy−1ds

)
=

∫ ∞

0

∫ ∞

0

e−t−stx−1sy−1dtds

Now in this double integral, use the change of variables t = ru and s = r(1−u).
The Jacobean is r and this gives us

Γ(x)Γ(y) =

∫ ∞

0

∫ 1

0

e−r(ru)x−1(r(1− u))y−1rdrdu

These can now be separated as a product of two integrals as the r integral
doesn’t depend on u at all:

Γ(x)Γ(y) =

∫ ∞

0

e−rrx+y−1

∫ 1

0

ux−1(1− u)y−1du = Γ(x+ y)B(x, y)
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Therefore

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)

This relation is one of the main uses of either function.

Another immediate application of this relation is the Legendre Duplication For-
mula. Beginning with B(z, 12 ), we have

B(z, 12 ) =

∫ 1

0

x−
1
2 (1− x)z−1dx

= 2

∫ 1

0

(1− u2)z−1du

= 2

∫ 1

0

(1− u)z−1(1 + u)z−1du

Where in the first line the substitution x = u2 was used. Using a reflection
substitution, we get

B(z, 12 ) = 2

∫ 1

0

uz−1(2− u)z−1du

= 2z
∫ 1

0

uz−1(1− u
2 )

z−1du

This is starting to look like a Beta function integral but not quite - substitute
u = 2t which gives

B(z, 12 ) = 22z
∫ 1

2

0

tz−1(1− t)z−1dt

Now thinking about the graph of this integrand f (or using the substitution
v = 1− t) we get ∫ 1

2

0

f =

∫ 1

1
2

f

so we can extend the domain of the (equation number) to [0, 1] which gives us

B(z, 12 ) = 22z−1

∫ 1

0

tz−1(1− t)z−1dt = 22z−1B(z, z)

Writing this in terms of Gamma functions and rearranging, we get Legendre’s
duplication formula:

Γ(z)Γ(z + 1
2 ) = 21−2z

√
πΓ(2z)
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This is a more precise version of the following result which comes up every now
and then:

1

22n

(
2n

n

)
∼ 1√

πn

The Bohr Mollerup Theorem can be used to derive pretty much all of the Gamma
function identities as shown in Emil Artin’s amazing book The Gamma Func-
tion. His proof of the reflection formula avoids the use of contour integration so
is probably more interesting for you to see:

Consider the function

φ(x) = Γ(x)Γ(1− x) sinπx

This has period 1 because

φ(x+ 1) = Γ(x+ 1)Γ(−x) sin(π(x+ 1))

= xΓ(x)
Γ(1− x)

−x
(− sinπx) = φ(x)

Next Legendre’s duplication formula states

Γ(x2 )Γ(
x+1
2 ) = 2

√
π2−xΓ(x)

and putting 1− x in it gives

Γ( 1−x
2 )Γ(1− x

2 ) = 2
√
π2x−1Γ(1− x)

Putting these to use,

φ(x2 )φ(
x+1
2 ) = Γ(x2 )Γ(1−

x
2 ) sin(

πx
2 )Γ(x+1

2 )Γ( 1−x
2 ) cos πx

2

= πΓ(x)Γ(1− x) sinπx

so we have

φ(x2 )φ(
x+1
2 ) = πφ(x) (2)

Since Γ(x)& sin(πx) are continuous and positive on [0, 1], φ is too. φ’s pe-
riodicity means that these are both true for all x ∈ R. This lets us define

gx = d2

dx2 logφ(x). From equation 2, we get

1

4
(g(x2 ) + g(x+1

2 )) = g(x)

Now as g is continuous on [0, 1] it is bounded on that interval, periodicity lets
us say that g(x) ≤M for some M ∈ R for all x ∈ R. Now we have

|g(x)| ≤ 1

4
|g(x2 )|+

1

4
|g(x+1

2 )| ≤ M

2
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So we can replaceM by M
2 . By infinite descent we can takeM = 0 so that g = 0

so that logφ(x) is a linear function. However it’s a linear periodic function so
it’s constant. How do we determine that constant? Well from the functional
equation for Gamma, we get

φ(x) =
Γ(1 + x)

x
Γ(1− x) sinπx

= Γ(1 + x)Γ(1− x)

(
π − π3x2

3!
+ . . .

)
This shows that for continuity we should define ϕ(0) = π which is our constant
and resolves ϕ being undefined at the integers! (otherwise we could have just
put in x = 1

2 which I wanted to do).

Now we can get an interesting product formula for sine:

Γ(z)Γ(1− z) =
e−γz

z

∞∏
k=1

(
1 +

z

k

)−1

e
z
k · (−z)e

γz

−z

∞∏
k=1

(
1− z

k

)−1

e−
z
k

=
1

z

∞∏
k=1

(
1− z2

k2

)−1

From the reflection formula we then get

sin(πx)

πx
=

∞∏
n=1

(
1− x2

n2

)
This is like if we pretended that we could factor sine like a polynomial, with its
roots at each integer point. This is actually what Euler did when he claimed this
result and it was later justified by Weierstrass with his Weierstrass factorisation
theorem.

Though this result is interesting in itself, Euler came across it while trying to
solve the problem which made him famous, the Basel problem, namely evaluat-

ing

∞∑
n=1

1

n2
. He managed to come up with some integral expression of the series

and approximate that to greater accuracy than his contemporaries. From there,

he might have recognised the answer is π2

6 which would give an advantage to
solving the problem. The method he used was to claim this factorisation of sine.
Then you can expand out the the coefficients of the product:

∞∏
n=1

(
1− x2

n2

)
= 1− x2

∞∑
k=1

1

k2
+ . . .

Now this can be compared with the Taylor series of sine:

sin(πx)

πx
= 1− π2x2

6
+ . . .
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Comparing the coefficients we get the result

∞∑
n=1

1

n2
=
π2

6

which is quite nice. Sadly this method doesn’t generalise to the other values of
ζ(2n) - that’ll be tackled next!

5 Digamma Function

A useful alternative to studying the Gamma function is looking at its logarithm
- similarly looking at the derivative of its logarithm can be better than looking
at the derivative directly. This is known as the Digamma function ψ(z)

ψ(z) =
d

dz
(ln Γ(z)) =

Γ′(z)

Γ(z)

A lot of the identities of the digamma function can be found directly from the
ones from the Gamma function:

ψ(z + 1) = ψ(z) +
1

z
(3)

ψ(1− x)− ψ(x) = π cotπx (4)

ψ(1 + z) = −γ +

∞∑
n=1

zn(−1)nζ(n+ 1) (5)

As usual, taking the logarithm of a product is a good idea and in this case, the
product forms of the Gamma function give some useful identities.

In particular, starting with the Euler product representation,

log Γ(z) = − log z +

∞∑
k=1

z log

(
1 +

1

k

)
− log

(
1 +

z

k

)
=⇒ ψ(z) = −1

z
+

∞∑
k=1

log

(
1 +

1

k

)
− 1

z + k

This can be manipulated to give a series more like the Harmonic series by
considering partial sums:

n∑
k=1

log

(
1 +

1

k

)
= ln(n+ 1) ≈ −γ +

n∑
k=1

1

k

with this approximation becoming exact as n → ∞. So we can rewrite the
above series as

ψ(z) = −1

z
− γ +

∞∑
k=1

1

k
− 1

z + k

Notably with z = 1 we get Γ′(1) = −γ.
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As a side note, differentiating under the integral sign with this gives us∫ ∞

0

e−x lnxdx = −γ

which is quite hard to get directly!

This series representation can be combined with the reflection formula for the
digamma function to give us an interesting infinite series. First, note that by
the functional equation,

ψ(1− x) = −γ +

∞∑
k=1

1

k
− 1

k − x

Then

π cot(πx) = ψ(1− x)− ψ(x) =
1

x
+

∞∑
k=1

1

k + x
− 1

k − x

=
1

x
+

∞∑
k=1

2x

x2 − k2
=⇒ 1

2x2
+

∞∑
k=1

1

x2 − k2
=
π cot(πx)

2x

Extending the series from −∞ to ∞, we can write this more neatly as

∞∑
k=−∞

1

x2 − k2
=
π cot(πx)

x

This series can be derived using contour integration - viewed that way we can
derive the reflection formula by working back with this method! Even more
interesting is what happens when you pull this series apart as a geometric series:

1

2x2
+

∞∑
k=1

1

x2 − k2
=

1

2x2
−

∞∑
k=1

1
k2

1− x2

k2

=
1

2x2
−

∞∑
k=1

1

k2
+
x2

k4
+ . . .

=
1

2x2
−

∞∑
k=1

∞∑
r=0

x2r

k2r+2

=
1

2x2
−

∞∑
r=0

x2rζ(2r + 2) =
π cot(πx)

2x

Now if we expand the terms of cot as a series, we can get values of ζ(2n) which
is very nice! A good place to start from is the definition of Bernoulli numbers
in terms of the generating function:

t

et − 1
=
t

2

(
coth

t

2
− 1

)
=

∞∑
n=0

Bnt
n

n!
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Then putting in t = ix, we get

ix

2

(
coth

ix

2
− 1

)
=
x

2

(
cot

x

2
− i
)
=

∞∑
n=0

Bn(ix)
n

n!

Splitting this into real and imaginary parts gives us the Taylor series for cot:

cotx =

∞∑
n=0

B2n(−1)n22mx2n−1

(2n)!

This is nice but why are the numbers Bn special enough to start from there?
It won’t be proved here but the Bernoulli numbers Bn appear in a few places
such as Faulhaber’s Formula:

d

n∑
k=1

kp =
np+1

p+ 1
+

1

2
np +

p∑
k=2

Bkp!

k!(p− k + 1)!
np−k+1

and the Euler Maclaurin Summation formula

n∑
i=m

f(i) =

∫ n

m

f(x)dx+
f(n) + f(m)

2
+

⌊ p
2 ⌋∑

k=1

B2k

(2k)!
(f (2k−1)(n)− f (2k−1)(m)) +Rp

for some remainder term Rp which can be estimated. This formula can be
used for various things such as proving Faulhaber’s formula and studying the
asymptotic behaviour of functions like the digamma function.

Getting back to the zeta function, we have

π cot(πx)

2x
=

∞∑
n=0

B2n(−1)nπ2n22n−1x2n−2

(2n)!
=

1

2x2
−

∞∑
n=1

x2n−2ζ(2n)

Since B0 = 1, the first terms match up and from there, comparing coefficients,
we get

ζ(2n) =
B2n(−1)n+1(2π)2n

2(2n)!

giving us every single one of them in one go. All the even integer values of the
zeta function can be determined this way but not the odd values of the zeta
function. The odd values of the zeta function in contrast are a complete mystery
with not only no formula linking all of them but no known formula for any of
them. Very little is known about most of the values with only ζ(3) ≈ 1.20206
being proved to be irrational by Roger Apéry in 1979.

6 Conclusion

I hope you enjoyed the talk - a quick tour through the most important prop-
erties of the Gamma Function and related objects and applications to various
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problems. This didn’t cover a lot of areas it appears in such as in the cal-
culation of integrals, the zeta function’s functional equation (and so analytic
number theory) and the Euler Mascheroni constant (also called gamma, γ!) so
if you’re interested those are good things to look into. In particular I recom-
mend Emil Artin’s book ’The Gamma Function’ for a fairly rigorous approach
to the Gamma Function while any decent book on integration will cover the cal-
culating integrals aspect of the Gamma Function - Inside Interesting Integrals
is great (my favourite math book!) or even the book I’m currently writing!

7 If there is time

7.1 The Gamma Zeta identity

The Gamma function can be nicely tied with the Zeta function in the following
integral, due to Riemann in 1859:∫ ∞

0

xs−1

ex − 1
dx

To handle this one, the denominator is similar to the sum of a geometric series in
form but we can’t use it yet as if the ratio was ex, the series would be divergent.
So dividing by ex on top and bottom to make the ratio e−x and expressing it
as a series gives:∫ ∞

0

xs−1

ex − 1
dx =

∫ ∞

0

xs−1e−x

1− e−x
dx =

∫ ∞

0

xs−1e−x
∞∑
k=0

e−kx =

∞∑
k=1

∫ ∞

0

xs−1e−kxdx

The integral is very close to a Gamma Function in form now; subbing in u = kx,
it becomes∫ ∞

0

xs−1

ex − 1
dx =

∞∑
k=1

∫ ∞

0

(u
k

)s−1

e−u dx

k
=

∞∑
k=1

1

ks

∫ ∞

0

us−1e−udu = Γ(s)ζ(s)

This identity is the part of deriving the Riemann Zeta functional equation which
is how the zeta function is extended to the complex plane - the basis of the
Riemann Hypothesis.

7.2 Gauss Multiplication Formula

The Bohr Mollerup theorem is really good at proving things are the Gamma
function and sometimes also finding new identities for the Gamma function. We
know that Γ(x) is log convex so a bunch of products of them is also log convex.
For example, we can consider a product of similar Gamma functions (inspired
by the Legendre Duplication formula which appears later on):

f(x) = Γ

(
x

p

)
Γ

(
x+ 1

p

)
. . .Γ

(
x+ p− 1

p

)
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Then we want f(x+ 1) = f(x) and here we have

f(x+ 1) = Γ

(
x+ 1

p

)
. . .Γ

(
x+ p− 1

p

)
= Γ

(
x

p

)
. . .Γ

(
x+ p− 1

p

)
which isn’t quite the functional equation. We can modify it though to have the
right property:

g(x) = pxΓ

(
x

p

)
Γ

(
x+ 1

p

)
. . .Γ

(
x+ p− 1

p

)
Now this is a Gamma function other than some normalisation factor by the
Bohr Mollerup theorem. To calculate g(1), use the Gauss Limit form of the
Gamma Function, we have

To calculate g(1) we can use the Euler reflection formula and the product

n−1∏
r=1

sin
(rπ
n

)
=

n

2n−1

There are two cases, when n is even and when n is odd, they’re fairly similar
overall but work out a little differently. First take n to be even, p = 2k. Then
we get by pairing them up to use the reflection formula, (if this is put in the
gamma function section, take out the derivation of the half sine product from
the log sine section and put it here)

Γ

(
1

p

)
Γ

(
2

p

)
. . .Γ

(
p− 1

p

)
= Γ

(
1

2k

)
Γ

(
2k − 1

2k

)
. . .Γ

(
1

2

)
=

π

sin
(

π
2k

) . . .√π
= πk− 1

2

(
k−1∏
r=1

sin
(rπ
2k

))−1

= πk− 1
2

( √
p

2k−
1
2

)−1

=
(2π)k−

1
2

√
2k

For the odd case p = 2k + 1 it’s quite similar except the pairing doesn’t give
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you the Γ( 12 ) term, there is an exact pairing:

Γ

(
1

p

)
Γ

(
2

p

)
. . .Γ

(
p− 1

p

)
= Γ

(
1

2k + 1

)
Γ

(
2k

2k + 1

)
. . .Γ

(
k

2k + 1

)
Γ

(
k + 1

2k + 1

)
= πk π

sin
(

π
2k+1

) . . . π

sin
(

kπ
2k+1

)
= πk

(
k∏

r=1

sin
(rπ
2k

))−1

= πk

(√
p

2k

)−1

=
(2π)k√
2k + 1

So in general, we have

Γ

(
1

p

)
Γ

(
2

p

)
. . .Γ

(
p− 1

p

)
=

(2π)
p−1
2

√
p

Therefore by the Bohr Mollerup theorem we get

Γ

(
x

p

)
. . .Γ

(
x+ p− 1

p

)
= (2π)

p−1
2 p

1
2−xΓ(x)

This is known as Gauss’ Multiplication formula. Note that with p = 2 we recover
Legendre’s duplication formula. Many of the other properties of the Gamma
function can be derived using this theorem - often if you know what to look for
- as can be seen in Artin’s book The Gamma Function.
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